Regulation of interaction of ras p21 with RalGDS and Raf-1 by cyclic AMP-dependent protein kinase. 1996

A Kikuchi, and L T Williams
Cardiovascular Research Institute, University of California, San Francisco 94143-0130, USA.

RalGDS is a GDP/GTP exchange protein for ral p24, a member of small GTP-binding protein superfamily. We have recently shown that RalGDS interacts directly with the GTP-bound active form of ras p21 through the effector loop of ras p21 in vitro, in insect cells and in the yeast two-hybrid system. These results suggest that RalGDS functions as an effector protein of ras p21. Here, we report that RalGDS interacts with ras p21 in mammalian cells in response to an extracellular signal. Epidermal growth factor (EGF) induced the interaction of c-ras p21 and RalGDS in COS cells expressing both proteins, but not in the cells expressing RalGDS and c-ras p21T35A, which is an effector loop mutant of ras p21. We also found that cyclic AMP-dependent protein kinase (protein kinase A) regulated the selectivity of ras p21-binding to either RalGDS or Raf-1. Protein kinase A phosphorylated RalGDS as well as (1-149)Raf (amino acid residues 1-149). Although the phosphorylated (1-149)Raf had a lower affinity for ras p21 than the unphosphorylated (1-149)Raf, both the phosphorylated and unphosphorylated RalGDS had the similar affinities for ras p21. The phosphorylation of RalGDS did not affect its activity to stimulate the GDP/GTP exchange of ral p24. Pretreatment of COS cells with forskolin further stimulated the interaction of ras p21 and RalGDS induced by EGF under the conditions that EGF-dependent Raf-1 activity was inhibited. These results indicate that ras p21 distinguishes between RalGDS and Raf-1 by their phosphorylation by protein kinase A.

UI MeSH Term Description Entries
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011518 Proto-Oncogene Proteins Products of proto-oncogenes. Normally they do not have oncogenic or transforming properties, but are involved in the regulation or differentiation of cell growth. They often have protein kinase activity. Cellular Proto-Oncogene Proteins,c-onc Proteins,Proto Oncogene Proteins, Cellular,Proto-Oncogene Products, Cellular,Cellular Proto Oncogene Proteins,Cellular Proto-Oncogene Products,Proto Oncogene Products, Cellular,Proto Oncogene Proteins,Proto-Oncogene Proteins, Cellular,c onc Proteins
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D015689 Oncogene Protein p21(ras) Transforming protein encoded by ras oncogenes. Point mutations in the cellular ras gene (c-ras) can also result in a mutant p21 protein that can transform mammalian cells. Oncogene protein p21(ras) has been directly implicated in human neoplasms, perhaps accounting for as much as 15-20% of all human tumors. This enzyme was formerly listed as EC 3.6.1.47. p21(v-Ha-ras),p21(v-Ki-ras),ras Oncogene Protein p21,p21 Transforming Viral Protein,p21 v-H-ras,p21 v-Ha-ras,p21 v-Ki-ras,p21 v-ras,p21(v-H-ras),p21(v-K-ras),ras Oncogene Product p21,ras Oncogene p21 Product,p21 v H ras,p21 v Ha ras,p21 v Ki ras,p21 v ras,v-H-ras, p21,v-Ha-ras, p21,v-Ki-ras, p21,v-ras, p21
D017346 Protein Serine-Threonine Kinases A group of enzymes that catalyzes the phosphorylation of serine or threonine residues in proteins, with ATP or other nucleotides as phosphate donors. Protein-Serine-Threonine Kinases,Serine-Threonine Protein Kinase,Serine-Threonine Protein Kinases,Protein-Serine Kinase,Protein-Serine-Threonine Kinase,Protein-Threonine Kinase,Serine Kinase,Serine-Threonine Kinase,Serine-Threonine Kinases,Threonine Kinase,Kinase, Protein-Serine,Kinase, Protein-Serine-Threonine,Kinase, Protein-Threonine,Kinase, Serine-Threonine,Kinases, Protein Serine-Threonine,Kinases, Protein-Serine-Threonine,Kinases, Serine-Threonine,Protein Kinase, Serine-Threonine,Protein Kinases, Serine-Threonine,Protein Serine Kinase,Protein Serine Threonine Kinase,Protein Serine Threonine Kinases,Protein Threonine Kinase,Serine Threonine Kinase,Serine Threonine Kinases,Serine Threonine Protein Kinase,Serine Threonine Protein Kinases
D017868 Cyclic AMP-Dependent Protein Kinases A group of enzymes that are dependent on CYCLIC AMP and catalyze the phosphorylation of SERINE or THREONINE residues on proteins. Included under this category are two cyclic-AMP-dependent protein kinase subtypes, each of which is defined by its subunit composition. Adenosine Cyclic Monophosphate-Dependent Protein Kinases,Protein Kinase A,cAMP Protein Kinase,cAMP-Dependent Protein Kinases,Cyclic AMP-Dependent Protein Kinase,cAMP-Dependent Protein Kinase,Adenosine Cyclic Monophosphate Dependent Protein Kinases,Cyclic AMP Dependent Protein Kinase,Cyclic AMP Dependent Protein Kinases,Protein Kinase, cAMP,Protein Kinase, cAMP-Dependent,Protein Kinases, cAMP-Dependent,cAMP Dependent Protein Kinase,cAMP Dependent Protein Kinases
D019204 GTP-Binding Proteins Regulatory proteins that act as molecular switches. They control a wide range of biological processes including: receptor signaling, intracellular signal transduction pathways, and protein synthesis. Their activity is regulated by factors that control their ability to bind to and hydrolyze GTP to GDP. EC 3.6.1.-. G-Proteins,GTP-Regulatory Proteins,Guanine Nucleotide Regulatory Proteins,G-Protein,GTP-Binding Protein,GTP-Regulatory Protein,Guanine Nucleotide Coupling Protein,G Protein,G Proteins,GTP Binding Protein,GTP Binding Proteins,GTP Regulatory Protein,GTP Regulatory Proteins,Protein, GTP-Binding,Protein, GTP-Regulatory,Proteins, GTP-Binding,Proteins, GTP-Regulatory

Related Publications

A Kikuchi, and L T Williams
July 1989, Proceedings of the National Academy of Sciences of the United States of America,
A Kikuchi, and L T Williams
May 2002, Molecular and cellular biology,
A Kikuchi, and L T Williams
January 2008, Progress in brain research,
A Kikuchi, and L T Williams
January 1980, Postepy higieny i medycyny doswiadczalnej,
A Kikuchi, and L T Williams
August 1995, Molecular and cellular biology,
Copied contents to your clipboard!