In vivo variation of Mycoplasma gallisepticum antigen expression in experimentally infected chickens. 1995

S Levisohn, and R Rosengarten, and D Yogev
Division of Avian Diseases, Kimron Veterinary Institute, Bet Dagan, Israel.

The antigen expression profiles of Mycoplasma gallisepticum isolates obtained from tracheal swabs of chickens after aerosol-inoculation with M. gallisepticum strain R or clonal variant R/E were examined in western immunoblots. A reference anti-M. gallisepticum chicken antiserum and antisera from individual infected chickens as well as monoclonal antibodies (mAbs) specific for surface proteins were used to monitor in vivo antigenic variation. mAbs 1E5 and 12D8, recognizing PvpA and p67a, recently shown to undergo high-frequency in vitro phase variation, were used for consecutive staining of colony and western immunoblots in order to distinguish between the resultant phenotypes with respect to the corresponding epitopes. Marked differences in the expression of major immunogenic proteins, including p67a, were observed between the two inocula as well as among reisolates recovered at different times of infection. Comparative western immunoblot analysis of the rapidly changing chicken serum antibody response and reisolates recovered during the course of an experimental infection with M. gallisepticum R or clonal variant R/E suggest that immune modulation may have a key role in generating surface diversity. In addition, comparison of colony immunoblots of strain R inoculum and of reisolated colonies from tracheas of birds 8 days post infection indicated an in vivo selection of the PvpA+p67a- phenotype. This study established that surface antigens of M. gallisepticum are subjected in vivo to rapid alteration in their expression. This variability may function as a crucial adaptive mechanism, enabling the organism to escape from the host immune defense and to adapt to the changing host environment at different stages of a natural infection.

UI MeSH Term Description Entries
D009174 Mycoplasma A genus of gram-negative, mostly facultatively anaerobic bacteria in the family MYCOPLASMATACEAE. The cells are bounded by a PLASMA MEMBRANE and lack a true CELL WALL. Its organisms are pathogens found on the MUCOUS MEMBRANES of humans, ANIMALS, and BIRDS. Eperythrozoon,Haemobartonella,Mycoplasma putrefaciens,PPLO,Pleuropneumonia-Like Organisms,Pleuropneumonia Like Organisms
D009175 Mycoplasma Infections Infections with species of the genus MYCOPLASMA. Eperythrozoonosis,Infections, Mycoplasma,Eperythrozoonoses,Infection, Mycoplasma,Mycoplasma Infection
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D002645 Chickens Common name for the species Gallus gallus, the domestic fowl, in the family Phasianidae, order GALLIFORMES. It is descended from the red jungle fowl of SOUTHEAST ASIA. Gallus gallus,Gallus domesticus,Gallus gallus domesticus,Chicken
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000940 Antigenic Variation Change in the surface ANTIGEN of a microorganism. There are two different types. One is a phenomenon, especially associated with INFLUENZA VIRUSES, where they undergo spontaneous variation both as slow antigenic drift and sudden emergence of new strains (antigenic shift). The second type is when certain PARASITES, especially trypanosomes, PLASMODIUM, and BORRELIA, survive the immune response of the host by changing the surface coat (antigen switching). (From Herbert et al., The Dictionary of Immunology, 4th ed) Antigen Switching,Antigenic Diversity,Variation, Antigenic,Antigen Variation,Antigenic Switching,Antigenic Variability,Switching, Antigenic,Diversity, Antigenic,Switching, Antigen,Variability, Antigenic,Variation, Antigen
D000942 Antigens, Bacterial Substances elaborated by bacteria that have antigenic activity. Bacterial Antigen,Bacterial Antigens,Antigen, Bacterial
D015964 Gene Expression Regulation, Bacterial Any of the processes by which cytoplasmic or intercellular factors influence the differential control of gene action in bacteria. Bacterial Gene Expression Regulation,Regulation of Gene Expression, Bacterial,Regulation, Gene Expression, Bacterial

Related Publications

S Levisohn, and R Rosengarten, and D Yogev
August 1989, Veterinary microbiology,
S Levisohn, and R Rosengarten, and D Yogev
November 1967, Avian diseases,
S Levisohn, and R Rosengarten, and D Yogev
January 1981, Avian diseases,
S Levisohn, and R Rosengarten, and D Yogev
October 2013, Journal of veterinary pharmacology and therapeutics,
S Levisohn, and R Rosengarten, and D Yogev
April 1972, DTW. Deutsche tierarztliche Wochenschrift,
S Levisohn, and R Rosengarten, and D Yogev
October 2021, Veterinary sciences,
Copied contents to your clipboard!