Chronic corticosterone treatment-induced ultrastructural changes at rat neuromuscular junction. 1995

M A Fahim
Department of Physiology, Faculty of Medicine and Health Sciences, U.A.E. University, Al-Ain, Abu Dhabi, United Arab Emirates.

BACKGROUND Chronic exposure to glucocorticoids affects both the structure and function of vertebrate skeletal muscles. As little is known about the effects of such steroids on the neuromuscular junctions (NMJs) of different muscle fiber types, the influence of chronic corticosterone (CORT) administration on the ultrastructure of NMJs of soleus (SOL) and extensor digitorum longus (EDL) was studied. METHODS Ten Fischer 344 male rats, the same animals used previously, were either injected daily with 5-10 mg CORT or received vehicle as control animals for 3 months and were sacrificed at 5 months of age. Muscles were bathed in situ in 4% phosphate buffered glutaraldehyde for ten minutes, then removed and conventional electron microscopic procedures were followed. Qualitative and quantitative observations of nerve terminal ultrastructures were statistically treated with multivariate analysis of variance to determine differences between control and CORT-treated animals. RESULTS Fast-twitch EDL muscles were more affected by CORT-treatment than slow-twitch SOL muscles. Morphometric analysis of NMJ's in CORT-treated rats revealed significant decrease in fiber diameter, nerve terminal area and synaptic vesicle density, but a significant increase in synaptic cleft (P < 0.05). The NMJ's underwent partial denervation and reinnervation processes as demonstrated by large areas of presynaptic nerve terminal occupied by microtubules and electron dense granular material. CONCLUSIONS Chronic CORT-treatments induced degenerative changes which were more pronounced in fast-twitch EDL muscles than slow-twitch SOL muscles, suggesting that pattern or amount of activity affect the CORT-treatment outcome. These steroid-induced stress changes are similar to those observed in aging and disuse studies of NMJ. Thus, glucocorticoid hormones may play an etiological role in the homeostasis of the NMJ in response to various stimuli.

UI MeSH Term Description Entries
D007279 Injections, Subcutaneous Forceful administration under the skin of liquid medication, nutrient, or other fluid through a hollow needle piercing the skin. Subcutaneous Injections,Injection, Subcutaneous,Subcutaneous Injection
D008297 Male Males
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009469 Neuromuscular Junction The synapse between a neuron and a muscle. Myoneural Junction,Nerve-Muscle Preparation,Junction, Myoneural,Junction, Neuromuscular,Junctions, Myoneural,Junctions, Neuromuscular,Myoneural Junctions,Nerve Muscle Preparation,Nerve-Muscle Preparations,Neuromuscular Junctions,Preparation, Nerve-Muscle,Preparations, Nerve-Muscle
D011916 Rats, Inbred F344 An inbred strain of rat that is used for general BIOMEDICAL RESEARCH purposes. Fischer Rats,Rats, Inbred CDF,Rats, Inbred Fischer 344,Rats, F344,Rats, Inbred Fisher 344,CDF Rat, Inbred,CDF Rats, Inbred,F344 Rat,F344 Rat, Inbred,F344 Rats,F344 Rats, Inbred,Inbred CDF Rat,Inbred CDF Rats,Inbred F344 Rat,Inbred F344 Rats,Rat, F344,Rat, Inbred CDF,Rat, Inbred F344,Rats, Fischer
D003345 Corticosterone An adrenocortical steroid that has modest but significant activities as a mineralocorticoid and a glucocorticoid. (From Goodman and Gilman's The Pharmacological Basis of Therapeutics, 8th ed, p1437)
D000375 Aging The gradual irreversible changes in structure and function of an organism that occur as a result of the passage of time. Senescence,Aging, Biological,Biological Aging
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D018656 Muscle Fibers, Fast-Twitch Skeletal muscle fibers characterized by their expression of the Type II MYOSIN HEAVY CHAIN isoforms which have high ATPase activity and effect several other functional properties - shortening velocity, power output, rate of tension redevelopment. Several fast types have been identified. Muscle Fibers, Intermediate,Muscle Fibers, Type II,Muscle Fibers, White,Fast-Twitch Muscle Fiber,Fast-Twitch Muscle Fibers,Fiber, Fast-Twitch Muscle,Fiber, Intermediate Muscle,Fiber, White Muscle,Fibers, Fast-Twitch Muscle,Fibers, Intermediate Muscle,Fibers, White Muscle,Intermediate Muscle Fiber,Intermediate Muscle Fibers,Muscle Fiber, Fast-Twitch,Muscle Fiber, Intermediate,Muscle Fiber, White,Muscle Fibers, Fast Twitch,White Muscle Fiber,White Muscle Fibers

Related Publications

M A Fahim
February 2016, The Journal of surgical research,
M A Fahim
May 2008, Journal of orthopaedic science : official journal of the Japanese Orthopaedic Association,
M A Fahim
March 1987, Journal of neurochemistry,
M A Fahim
November 1975, Comptes rendus hebdomadaires des seances de l'Academie des sciences. Serie D: Sciences naturelles,
M A Fahim
June 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Copied contents to your clipboard!