Isolation, characterization, and functional role of the high-potential iron-sulfur protein (HiPIP) from Rhodoferax fermentans. 1995

A Hochkoeppler, and P Kofod, and G Ferro, and S Ciurli
Department of Biology, University of Bologna, Italy.

A new high-potential iron-sulfur protein (HiPIP) has been isolated and purified to homogeneity from the soluble fraction obtained from light-grown cells of the facultative photoheterotrophic bacterium Rhodoferax fermentans. The new protein was identified as a HiPIP by virtue of its molecular properties such as the molecular mass (M(r) = 8.7 kDa), the Fe/protein ratio (3.8 +/- 0.2), the reduction potential (Em,7 = +351 mV), the electronic spectrum of the reduced and the oxidized protein, and the EPR spectrum of the oxidized protein. These molecular properties lie in the range observed for HiPIPs from other sources and, in particular, the iron content is consistent with the presence of one [Fe4S4] cubane cluster per molecule. The isoelectric pH values of the two redox forms are consistent with a basic protein. Kinetic studies of HiPIP oxidation, performed by monitoring the absorbance changes induced upon light excitation of the photosynthetic reaction center, give direct evidence of the role of the HiPIP in the photosynthetic electron transfer chain of Rf. fermentans.

UI MeSH Term Description Entries
D007501 Iron A metallic element with atomic symbol Fe, atomic number 26, and atomic weight 55.85. It is an essential constituent of HEMOGLOBINS; CYTOCHROMES; and IRON-BINDING PROTEINS. It plays a role in cellular redox reactions and in the transport of OXYGEN. Iron-56,Iron 56
D007506 Iron-Sulfur Proteins A group of proteins possessing only the iron-sulfur complex as the prosthetic group. These proteins participate in all major pathways of electron transport: photosynthesis, respiration, hydroxylation and bacterial hydrogen and nitrogen fixation. Iron-Sulfur Protein,Iron Sulfur Proteins,Iron Sulfur Protein,Protein, Iron-Sulfur,Proteins, Iron Sulfur,Proteins, Iron-Sulfur,Sulfur Proteins, Iron
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008027 Light That portion of the electromagnetic spectrum in the visible, ultraviolet, and infrared range. Light, Visible,Photoradiation,Radiation, Visible,Visible Radiation,Photoradiations,Radiations, Visible,Visible Light,Visible Radiations
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D011199 Potentiometry Solution titration in which the end point is read from the electrode-potential variations with the concentrations of potential determining ions. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
D004578 Electron Spin Resonance Spectroscopy A technique applicable to the wide variety of substances which exhibit paramagnetism because of the magnetic moments of unpaired electrons. The spectra are useful for detection and identification, for determination of electron structure, for study of interactions between molecules, and for measurement of nuclear spins and moments. (From McGraw-Hill Encyclopedia of Science and Technology, 7th edition) Electron nuclear double resonance (ENDOR) spectroscopy is a variant of the technique which can give enhanced resolution. Electron spin resonance analysis can now be used in vivo, including imaging applications such as MAGNETIC RESONANCE IMAGING. ENDOR,Electron Nuclear Double Resonance,Electron Paramagnetic Resonance,Paramagnetic Resonance,Electron Spin Resonance,Paramagnetic Resonance, Electron,Resonance, Electron Paramagnetic,Resonance, Electron Spin,Resonance, Paramagnetic
D004579 Electron Transport The process by which ELECTRONS are transported from a reduced substrate to molecular OXYGEN. (From Bennington, Saunders Dictionary and Encyclopedia of Laboratory Medicine and Technology, 1984, p270) Respiratory Chain,Chain, Respiratory,Chains, Respiratory,Respiratory Chains,Transport, Electron
D001419 Bacteria One of the three domains of life (the others being Eukarya and ARCHAEA), also called Eubacteria. They are unicellular prokaryotic microorganisms which generally possess rigid cell walls, multiply by cell division, and exhibit three principal forms: round or coccal, rodlike or bacillary, and spiral or spirochetal. Bacteria can be classified by their response to OXYGEN: aerobic, anaerobic, or facultatively anaerobic; by the mode by which they obtain their energy: chemotrophy (via chemical reaction) or PHOTOTROPHY (via light reaction); for chemotrophs by their source of chemical energy: CHEMOLITHOTROPHY (from inorganic compounds) or chemoorganotrophy (from organic compounds); and by their source for CARBON; NITROGEN; etc.; HETEROTROPHY (from organic sources) or AUTOTROPHY (from CARBON DIOXIDE). They can also be classified by whether or not they stain (based on the structure of their CELL WALLS) with CRYSTAL VIOLET dye: gram-negative or gram-positive. Eubacteria
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial

Related Publications

A Hochkoeppler, and P Kofod, and G Ferro, and S Ciurli
September 2003, Acta crystallographica. Section D, Biological crystallography,
A Hochkoeppler, and P Kofod, and G Ferro, and S Ciurli
March 1996, European journal of biochemistry,
A Hochkoeppler, and P Kofod, and G Ferro, and S Ciurli
March 1997, European journal of biochemistry,
A Hochkoeppler, and P Kofod, and G Ferro, and S Ciurli
July 1996, Proceedings of the National Academy of Sciences of the United States of America,
A Hochkoeppler, and P Kofod, and G Ferro, and S Ciurli
October 2020, Biomolecular NMR assignments,
A Hochkoeppler, and P Kofod, and G Ferro, and S Ciurli
October 1974, Journal of the American Chemical Society,
A Hochkoeppler, and P Kofod, and G Ferro, and S Ciurli
July 1983, Biokhimiia (Moscow, Russia),
A Hochkoeppler, and P Kofod, and G Ferro, and S Ciurli
May 2008, Biotechnology letters,
Copied contents to your clipboard!