The primary structure of Rhodoferax fermentans high-potential iron-sulfur protein, an electron donor to the photosynthetic reaction center. 1997

G Van Driessche, and S Ciurli, and A Hochkoeppler, and J J Van Beeumen
Department of Biochemistry, Physiology and Microbiology, University of Gent, Belgium.

The complete amino acid sequence of Rhodoferax fermentans high-potential iron-sulfur protein (Hipip), which is known to be an efficient electron donor to the photosynthetic reaction center, has been determined using both N-terminal and C-terminal analyses. The sequence contains 75 residues, with 11 positive charges, 10 negative charges, and one histidine residue. The molecular mass of apo-Hipip, determined by electrospray ionization mass spectrometry, is 7849.64 Da. Multiple sequence alignment, based both on primary and tertiary structure information, reveals conservation of Tyr19 and Gly75 (Chromatium vinosum numbering) in addition to the four [Fe4S4]-bound cysteines. The Hipip from Rf. fermentans is most similar (57% similarity) to the Hipip from Rubrivivax gelatinosus, a photosynthetic bacterium belonging to the beta-1 subgroup of the proteobacteria.

UI MeSH Term Description Entries
D007506 Iron-Sulfur Proteins A group of proteins possessing only the iron-sulfur complex as the prosthetic group. These proteins participate in all major pathways of electron transport: photosynthesis, respiration, hydroxylation and bacterial hydrogen and nitrogen fixation. Iron-Sulfur Protein,Iron Sulfur Proteins,Iron Sulfur Protein,Protein, Iron-Sulfur,Proteins, Iron Sulfur,Proteins, Iron-Sulfur,Sulfur Proteins, Iron
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D004579 Electron Transport The process by which ELECTRONS are transported from a reduced substrate to molecular OXYGEN. (From Bennington, Saunders Dictionary and Encyclopedia of Laboratory Medicine and Technology, 1984, p270) Respiratory Chain,Chain, Respiratory,Chains, Respiratory,Respiratory Chains,Transport, Electron
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001419 Bacteria One of the three domains of life (the others being Eukarya and ARCHAEA), also called Eubacteria. They are unicellular prokaryotic microorganisms which generally possess rigid cell walls, multiply by cell division, and exhibit three principal forms: round or coccal, rodlike or bacillary, and spiral or spirochetal. Bacteria can be classified by their response to OXYGEN: aerobic, anaerobic, or facultatively anaerobic; by the mode by which they obtain their energy: chemotrophy (via chemical reaction) or PHOTOTROPHY (via light reaction); for chemotrophs by their source of chemical energy: CHEMOLITHOTROPHY (from inorganic compounds) or chemoorganotrophy (from organic compounds); and by their source for CARBON; NITROGEN; etc.; HETEROTROPHY (from organic sources) or AUTOTROPHY (from CARBON DIOXIDE). They can also be classified by whether or not they stain (based on the structure of their CELL WALLS) with CRYSTAL VIOLET dye: gram-negative or gram-positive. Eubacteria
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D015394 Molecular Structure The location of the atoms, groups or ions relative to one another in a molecule, as well as the number, type and location of covalent bonds. Structure, Molecular,Molecular Structures,Structures, Molecular
D017386 Sequence Homology, Amino Acid The degree of similarity between sequences of amino acids. This information is useful for the analyzing genetic relatedness of proteins and species. Homologous Sequences, Amino Acid,Amino Acid Sequence Homology,Homologs, Amino Acid Sequence,Homologs, Protein Sequence,Homology, Protein Sequence,Protein Sequence Homologs,Protein Sequence Homology,Sequence Homology, Protein,Homolog, Protein Sequence,Homologies, Protein Sequence,Protein Sequence Homolog,Protein Sequence Homologies,Sequence Homolog, Protein,Sequence Homologies, Protein,Sequence Homologs, Protein

Related Publications

G Van Driessche, and S Ciurli, and A Hochkoeppler, and J J Van Beeumen
July 1996, Proceedings of the National Academy of Sciences of the United States of America,
G Van Driessche, and S Ciurli, and A Hochkoeppler, and J J Van Beeumen
January 1995, FEBS letters,
G Van Driessche, and S Ciurli, and A Hochkoeppler, and J J Van Beeumen
September 2003, Acta crystallographica. Section D, Biological crystallography,
G Van Driessche, and S Ciurli, and A Hochkoeppler, and J J Van Beeumen
March 1996, European journal of biochemistry,
G Van Driessche, and S Ciurli, and A Hochkoeppler, and J J Van Beeumen
October 1995, Archives of biochemistry and biophysics,
G Van Driessche, and S Ciurli, and A Hochkoeppler, and J J Van Beeumen
December 2000, Proceedings of the National Academy of Sciences of the United States of America,
G Van Driessche, and S Ciurli, and A Hochkoeppler, and J J Van Beeumen
September 1995, Biochemistry,
G Van Driessche, and S Ciurli, and A Hochkoeppler, and J J Van Beeumen
February 1974, The Journal of biological chemistry,
G Van Driessche, and S Ciurli, and A Hochkoeppler, and J J Van Beeumen
January 1976, The Journal of biological chemistry,
G Van Driessche, and S Ciurli, and A Hochkoeppler, and J J Van Beeumen
June 1971, Biochemical and biophysical research communications,
Copied contents to your clipboard!