Two tight binding sites for ADP and their interactions during nucleotide exchange in chloroplast coupling factor 1. 1995

J G Digel, and R E McCarty
Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA.

Chloroplast coupling factor 1 (CF1) deficient in its epsilon subunit was loaded with 2'(3')-O-trinitrophenyl-ADP (TNP-ADP), and the release of tightly bound TNP-ADP was followed as a decrease in fluorescence. TNP-ADP could be exchanged for medium ADP, ATP, MgADP, and MgATP. The preferred substrate for exchange was MgADP, particularly in the presence of P(i). One nucleotide binding site contained ADP which was not displaced during TNP-ADP loading. When Mg2+ was bound at this site, complete exchange of bound TNP-ADP for medium nucleotide was prevented. This tightly bound MgADP was removed by incubation of the enzyme with EDTA. Tightly bound TNP-ADP was removed by high concentrations of sulfite, sulfate, or P(i) in the absence of medium nucleotide and free Mg2+, regardless of the bound Mg2+ content of the enzyme. Sulfite and P(i), in the presence of medium nucleotide and Mg2+, enabled complete exchange of tightly bound TNP-ADP. The combination of Mg2+ and sulfite, or Mg2+ and P(i), caused exchange of tightly bound ADP from two different sites. These results suggest that both sites exchange when the enzyme is fully active, and that at least three sites are likely to participate in catalysis.

UI MeSH Term Description Entries
D008274 Magnesium A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.
D009711 Nucleotides The monomeric units from which DNA or RNA polymers are constructed. They consist of a purine or pyrimidine base, a pentose sugar, and a phosphate group. (From King & Stansfield, A Dictionary of Genetics, 4th ed) Nucleotide
D002736 Chloroplasts Plant cell inclusion bodies that contain the photosynthetic pigment CHLOROPHYLL, which is associated with the membrane of THYLAKOIDS. Chloroplasts occur in cells of leaves and young stems of plants. They are also found in some forms of PHYTOPLANKTON such as HAPTOPHYTA; DINOFLAGELLATES; DIATOMS; and CRYPTOPHYTA. Chloroplast,Etioplasts,Etioplast
D005456 Fluorescent Dyes Chemicals that emit light after excitation by light. The wave length of the emitted light is usually longer than that of the incident light. Fluorochromes are substances that cause fluorescence in other substances, i.e., dyes used to mark or label other compounds with fluorescent tags. Flourescent Agent,Fluorescent Dye,Fluorescent Probe,Fluorescent Probes,Fluorochrome,Fluorochromes,Fluorogenic Substrates,Fluorescence Agents,Fluorescent Agents,Fluorogenic Substrate,Agents, Fluorescence,Agents, Fluorescent,Dyes, Fluorescent,Probes, Fluorescent,Substrates, Fluorogenic
D006180 Proton-Translocating ATPases Multisubunit enzymes that reversibly synthesize ADENOSINE TRIPHOSPHATE. They are coupled to the transport of protons across a membrane. ATP Dependent Proton Translocase,ATPase, F0,ATPase, F1,Adenosinetriphosphatase F1,F(1)F(0)-ATPase,F1 ATPase,H(+)-Transporting ATP Synthase,H(+)-Transporting ATPase,H(+)ATPase Complex,Proton-Translocating ATPase,Proton-Translocating ATPase Complex,Proton-Translocating ATPase Complexes,ATPase, F(1)F(0),ATPase, F0F1,ATPase, H(+),Adenosine Triphosphatase Complex,F(0)F(1)-ATP Synthase,F-0-ATPase,F-1-ATPase,F0F1 ATPase,F1-ATPase,F1F0 ATPase Complex,H(+)-ATPase,H(+)-Transporting ATP Synthase, Acyl-Phosphate-Linked,H+ ATPase,H+ Transporting ATP Synthase,H+-Translocating ATPase,Proton-Translocating ATPase, F0 Sector,Proton-Translocating ATPase, F1 Sector,ATPase Complex, Proton-Translocating,ATPase Complexes, Proton-Translocating,ATPase, H+,ATPase, H+-Translocating,ATPase, Proton-Translocating,Complex, Adenosine Triphosphatase,Complexes, Proton-Translocating ATPase,F 0 ATPase,F 1 ATPase,F0 ATPase,H+ Translocating ATPase,Proton Translocating ATPase,Proton Translocating ATPase Complex,Proton Translocating ATPase Complexes,Proton Translocating ATPase, F0 Sector,Proton Translocating ATPase, F1 Sector,Triphosphatase Complex, Adenosine
D000244 Adenosine Diphosphate Adenosine 5'-(trihydrogen diphosphate). An adenine nucleotide containing two phosphate groups esterified to the sugar moiety at the 5'-position. ADP,Adenosine Pyrophosphate,Magnesium ADP,MgADP,Adenosine 5'-Pyrophosphate,5'-Pyrophosphate, Adenosine,ADP, Magnesium,Adenosine 5' Pyrophosphate,Diphosphate, Adenosine,Pyrophosphate, Adenosine
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining

Related Publications

J G Digel, and R E McCarty
March 1991, The Journal of biological chemistry,
J G Digel, and R E McCarty
February 1982, Biochemistry,
J G Digel, and R E McCarty
October 1978, Biochimica et biophysica acta,
J G Digel, and R E McCarty
April 1993, The Journal of biological chemistry,
J G Digel, and R E McCarty
December 1982, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!