Insulin-like growth factor-1 (IGF-1) protects NOD mice from insulitis and diabetes. 1995

I Bergerot, and N Fabien, and V Maguer, and C Thivolet
INSERM U. 197, Faculté de Médecine, Alexis Carrel, Lyon, France.

To evaluate the effect of IGF-1 on the autoimmune process of beta cell destruction, permissive non-obese diabetic (NOD) recipients were adoptively transferred with 7 x 10(6) autoreactive T cells from diabetic NOD mice and were administered subcutaneously 10 micrograms rhIGF-1, twice daily for 3 weeks. Administration of rhIGF-1 reduced the final incidence of successful transfers of diabetes observed in only 6/24 mice (25%) versus 12/21 (57%) in control mice. A marked reduction of insulitis during histological analysis of pancreatic glands was also observed. Mice treated with rhIGF-1 had a higher percentage of intact islets (48.6 +/- 12% versus 1.6 +/- 1.1%, P = 0.001) and a lower percentage of infiltrated islets. Islets from rhIGF-1-treated mice had a more intense insulin staining reflecting a higher beta cell mass, but no difference was observed in the amount of insulin content of pancreatic extracts and in the amounts of mRNA transcripts for proinsulin. No difference was also observed in the titres of three islet cell antibody (ICA)-positive sera and in the pattern of A2B5 staining. Some mice developed diabetes and severe islet cell infiltration despite rhIGF-1, thus indicating that some committed T cells were still able to invade the islets and cause beta cell destruction. The percentages of CD4+ and CD8+ T cells in the spleen of experimental mice were similar. To evaluate the effects of rhIGF-1 on cell trafficking in recipient mice, T cells from diabetic NOD Thy-1,2 mice injected into congenic NOD-N Thy-1,1 mice were monitored 3 weeks after adoptive cell transfer. The percentage of Thy-1,2+ T cells was significantly reduced in the spleen (10.8 +/- 1.3% versus 17.2 +/- 3.9%, P = 0.004) of rhIGF-1 treated mice in contrast to the thymus (68.4 +/- 7.9% versus 72.87 +/- 6.2%, P = 0.306), suggesting that rhIGF-1 could influence T cell trafficking to the lymphoid organs. The findings that rhIGF-1 has protective effects in autoimmune diabetes opens new perspectives for future experiments as well as for preventive strategies in human type I diabetes.

UI MeSH Term Description Entries
D007111 Immunity, Cellular Manifestations of the immune response which are mediated by antigen-sensitized T-lymphocytes via lymphokines or direct cytotoxicity. This takes place in the absence of circulating antibody or where antibody plays a subordinate role. Cell-Mediated Immunity,Cellular Immune Response,Cell Mediated Immunity,Cell-Mediated Immunities,Cellular Immune Responses,Cellular Immunities,Cellular Immunity,Immune Response, Cellular,Immune Responses, Cellular,Immunities, Cell-Mediated,Immunities, Cellular,Immunity, Cell-Mediated,Response, Cellular Immune
D007116 Immunization, Passive Transfer of immunity from immunized to non-immune host by administration of serum antibodies, or transplantation of lymphocytes (ADOPTIVE TRANSFER). Convalescent Plasma Therapy,Immunoglobulin Therapy,Immunotherapy, Passive,Normal Serum Globulin Therapy,Passive Antibody Transfer,Passive Transfer of Immunity,Serotherapy,Passive Immunotherapy,Therapy, Immunoglobulin,Antibody Transfer, Passive,Passive Immunization,Therapy, Convalescent Plasma,Transfer, Passive Antibody
D007334 Insulin-Like Growth Factor I A well-characterized basic peptide believed to be secreted by the liver and to circulate in the blood. It has growth-regulating, insulin-like, and mitogenic activities. This growth factor has a major, but not absolute, dependence on GROWTH HORMONE. It is believed to be mainly active in adults in contrast to INSULIN-LIKE GROWTH FACTOR II, which is a major fetal growth factor. IGF-I,Somatomedin C,IGF-1,IGF-I-SmC,Insulin Like Growth Factor I,Insulin-Like Somatomedin Peptide I,Insulin Like Somatomedin Peptide I
D007515 Islets of Langerhans Irregular microscopic structures consisting of cords of endocrine cells that are scattered throughout the PANCREAS among the exocrine acini. Each islet is surrounded by connective tissue fibers and penetrated by a network of capillaries. There are four major cell types. The most abundant beta cells (50-80%) secrete INSULIN. Alpha cells (5-20%) secrete GLUCAGON. PP cells (10-35%) secrete PANCREATIC POLYPEPTIDE. Delta cells (~5%) secrete SOMATOSTATIN. Islands of Langerhans,Islet Cells,Nesidioblasts,Pancreas, Endocrine,Pancreatic Islets,Cell, Islet,Cells, Islet,Endocrine Pancreas,Islet Cell,Islet, Pancreatic,Islets, Pancreatic,Langerhans Islands,Langerhans Islets,Nesidioblast,Pancreatic Islet
D008297 Male Males
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D003922 Diabetes Mellitus, Type 1 A subtype of DIABETES MELLITUS that is characterized by INSULIN deficiency. It is manifested by the sudden onset of severe HYPERGLYCEMIA, rapid progression to DIABETIC KETOACIDOSIS, and DEATH unless treated with insulin. The disease may occur at any age, but is most common in childhood or adolescence. Diabetes Mellitus, Brittle,Diabetes Mellitus, Insulin-Dependent,Diabetes Mellitus, Juvenile-Onset,Diabetes Mellitus, Ketosis-Prone,Diabetes Mellitus, Sudden-Onset,Diabetes, Autoimmune,IDDM,Autoimmune Diabetes,Diabetes Mellitus, Insulin-Dependent, 1,Diabetes Mellitus, Type I,Insulin-Dependent Diabetes Mellitus 1,Juvenile-Onset Diabetes,Type 1 Diabetes,Type 1 Diabetes Mellitus,Brittle Diabetes Mellitus,Diabetes Mellitus, Insulin Dependent,Diabetes Mellitus, Juvenile Onset,Diabetes Mellitus, Ketosis Prone,Diabetes Mellitus, Sudden Onset,Diabetes, Juvenile-Onset,Diabetes, Type 1,Insulin Dependent Diabetes Mellitus 1,Insulin-Dependent Diabetes Mellitus,Juvenile Onset Diabetes,Juvenile-Onset Diabetes Mellitus,Ketosis-Prone Diabetes Mellitus,Sudden-Onset Diabetes Mellitus
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015496 CD4-Positive T-Lymphocytes A critical subpopulation of T-lymphocytes involved in the induction of most immunological functions. The HIV virus has selective tropism for the T4 cell which expresses the CD4 phenotypic marker, a receptor for HIV. In fact, the key element in the profound immunosuppression seen in HIV infection is the depletion of this subset of T-lymphocytes. T4 Cells,T4 Lymphocytes,CD4-Positive Lymphocytes,CD4 Positive T Lymphocytes,CD4-Positive Lymphocyte,CD4-Positive T-Lymphocyte,Lymphocyte, CD4-Positive,Lymphocytes, CD4-Positive,T-Lymphocyte, CD4-Positive,T-Lymphocytes, CD4-Positive,T4 Cell,T4 Lymphocyte

Related Publications

I Bergerot, and N Fabien, and V Maguer, and C Thivolet
January 2004, Autoimmunity,
I Bergerot, and N Fabien, and V Maguer, and C Thivolet
January 2019, PloS one,
I Bergerot, and N Fabien, and V Maguer, and C Thivolet
September 1996, Diabetes research and clinical practice,
I Bergerot, and N Fabien, and V Maguer, and C Thivolet
August 1990, Diabetes,
I Bergerot, and N Fabien, and V Maguer, and C Thivolet
September 2001, Journal of autoimmunity,
I Bergerot, and N Fabien, and V Maguer, and C Thivolet
October 2001, Molecular pathology : MP,
I Bergerot, and N Fabien, and V Maguer, and C Thivolet
October 2002, Journal of cardiovascular pharmacology and therapeutics,
I Bergerot, and N Fabien, and V Maguer, and C Thivolet
November 1989, Endocrinology,
I Bergerot, and N Fabien, and V Maguer, and C Thivolet
December 2000, Journal of neuroscience research,
I Bergerot, and N Fabien, and V Maguer, and C Thivolet
February 1985, Endocrinology,
Copied contents to your clipboard!