Fusion of phosphatidic acid-phosphatidylcholine mixed lipid vesicles. 1979

M J Liao, and J H Prestegard

Ca2+-induced transformation of phosphatidylcholine-phosphatidic acid vesicles to larger bilayer structures has been examined using nuclear magnetic resonance, electron microscopy, gel permeation and radioisotope tracer techniques. For concentrated vesicle preparations where phosphatidic acid content remains less than 50% of total lipid, transformation to larger well defined unilamellar structures can be induced. The size of the product formed is dependent on phosphatidic acid content and on Ca2+ content when Ca2+ levels are between 0.3 and 1.0 mol ratios with respect to phosphatidic acid. During transformation bilayer composition remains unchanged and internal contents are retained in the final structure. These properties are indicative of concerted two vesicle and multiple vesicle fusions. The controllable and concerted fusions make the phosphatidic acid system suitable for further mechanistic studies.

UI MeSH Term Description Entries
D008081 Liposomes Artificial, single or multilaminar vesicles (made from lecithins or other lipids) that are used for the delivery of a variety of biological molecules or molecular complexes to cells, for example, drug delivery and gene transfer. They are also used to study membranes and membrane proteins. Niosomes,Transferosomes,Ultradeformable Liposomes,Liposomes, Ultra-deformable,Liposome,Liposome, Ultra-deformable,Liposome, Ultradeformable,Liposomes, Ultra deformable,Liposomes, Ultradeformable,Niosome,Transferosome,Ultra-deformable Liposome,Ultra-deformable Liposomes,Ultradeformable Liposome
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D010316 Particle Size Relating to the size of solids. Particle Sizes,Size, Particle,Sizes, Particle
D010712 Phosphatidic Acids Fatty acid derivatives of glycerophosphates. They are composed of glycerol bound in ester linkage with 1 mole of phosphoric acid at the terminal 3-hydroxyl group and with 2 moles of fatty acids at the other two hydroxyl groups. Ammonium Phosphatidate,Diacylglycerophosphates,Phosphatidic Acid,Acid, Phosphatidic,Acids, Phosphatidic,Phosphatidate, Ammonium
D010713 Phosphatidylcholines Derivatives of PHOSPHATIDIC ACIDS in which the phosphoric acid is bound in ester linkage to a CHOLINE moiety. Choline Phosphoglycerides,Choline Glycerophospholipids,Phosphatidyl Choline,Phosphatidyl Cholines,Phosphatidylcholine,Choline, Phosphatidyl,Cholines, Phosphatidyl,Glycerophospholipids, Choline,Phosphoglycerides, Choline
D002104 Cadmium An element with atomic symbol Cd, atomic number 48, and atomic weight 112.41. It is a metal and ingestion will lead to CADMIUM POISONING.
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation

Related Publications

M J Liao, and J H Prestegard
March 1977, Biochemistry,
M J Liao, and J H Prestegard
March 1985, Biochimica et biophysica acta,
M J Liao, and J H Prestegard
February 2010, Langmuir : the ACS journal of surfaces and colloids,
M J Liao, and J H Prestegard
August 1978, Biochemistry,
M J Liao, and J H Prestegard
August 1991, Biochimica et biophysica acta,
M J Liao, and J H Prestegard
June 1983, European journal of biochemistry,
Copied contents to your clipboard!