Adrenergic receptor systems and unscheduled DNA synthesis in the rat brain. 1995

A G Sadile, and C Lamberti-D'Mello, and A Cerbone, and S Amoroso, and L Annunziato, and T Menna, and C Buono, and A Giuditta
Department of Human Physiology, F. Bottazzi, Second University of Naples (SUN), Italy.

Two experiments were carried out in the albino rat to investigate the role of brain adrenergic systems in DNA remodeling. Adult male Sprague-Dawley rats were given an intraventricular microinjection of an adrenergic drug or vehicle followed 2 h later by the intraventricular injection of 50 microCi of [3H-methyl]thymidine. The rats were sacrificed 0.5 h after the injection of the radioactive tracer. The rate of DNA synthesis was determined by measuring the amount of radioactive precursor incorporated into the DNA extracted from homogenates of several brain areas. In Experiment 1, at time 0 rats received the alpha-adrenergic antagonist phentolamine (5 micrograms), the beta antagonist propranolol (10 micrograms), the alpha agonist phenylephrine (1 microgram), the beta agonist isoproterenol (12.5 micrograms), or the vehicle. The latter decreased UBDS in neocortex, and increased it in the septum, neostriatum, hypothalamus, cerebellum, and rest of the brain. The alpha and beta agonists and antagonists induced several significant effects, depending on the brain region. In Experiment 2, rats were bilaterally lesioned in the dorsal noradrenergic bundle (DNB) by injection of 6-hydroxydopamine or were sham lesioned. One week later, at time 0 they were given the alpha agonist phenylephrine (1 microgram), the beta agonist isoproterenol (12.5 micrograms), or the vehicle. The DNB-lesioned rats showed a higher UBDS in the hippocampus, neocortex, and hypothalamus, which was reversed by the alpha or the beta agonist. The results suggest an influence of the DNB, probably as a tonic inhibitor of UBDS in the hippocampus and the hypothalamus which, in turn, are likely to be mediated by beta- and alpha-adrenergic receptors. In addition, a phasic inhibitory effect seems to be mediated by beta and alpha receptors in the neocortex, and by beta receptors in the cerebellum. A modulatory role of central adrenergic systems on unscheduled brain DNA synthesis may be inferred from these findings.

UI MeSH Term Description Entries
D007545 Isoproterenol Isopropyl analog of EPINEPHRINE; beta-sympathomimetic that acts on the heart, bronchi, skeletal muscle, alimentary tract, etc. It is used mainly as bronchodilator and heart stimulant. Isoprenaline,Isopropylarterenol,4-(1-Hydroxy-2-((1-methylethyl)amino)ethyl)-1,2-benzenediol,Euspiran,Isadrin,Isadrine,Isopropyl Noradrenaline,Isopropylnoradrenaline,Isopropylnorepinephrine,Isoproterenol Hydrochloride,Isoproterenol Sulfate,Isuprel,Izadrin,Norisodrine,Novodrin,Hydrochloride, Isoproterenol,Noradrenaline, Isopropyl,Sulfate, Isoproterenol
D008297 Male Males
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D010646 Phentolamine A nonselective alpha-adrenergic antagonist. It is used in the treatment of hypertension and hypertensive emergencies, pheochromocytoma, vasospasm of RAYNAUD DISEASE and frostbite, clonidine withdrawal syndrome, impotence, and peripheral vascular disease. Fentolamin,Phentolamine Mesilate,Phentolamine Mesylate,Phentolamine Methanesulfonate,Phentolamine Mono-hydrochloride,Regitine,Regityn,Rogitine,Z-Max,Mesilate, Phentolamine,Mesylate, Phentolamine,Methanesulfonate, Phentolamine,Mono-hydrochloride, Phentolamine,Phentolamine Mono hydrochloride
D010656 Phenylephrine An alpha-1 adrenergic agonist used as a mydriatic, nasal decongestant, and cardiotonic agent. (R)-3-Hydroxy-alpha-((methylamino)methyl)benzenemethanol,Metaoxedrin,Metasympatol,Mezaton,Neo-Synephrine,Neosynephrine,Phenylephrine Hydrochloride,Phenylephrine Tannate,Neo Synephrine,Tannate, Phenylephrine
D011433 Propranolol A widely used non-cardioselective beta-adrenergic antagonist. Propranolol has been used for MYOCARDIAL INFARCTION; ARRHYTHMIA; ANGINA PECTORIS; HYPERTENSION; HYPERTHYROIDISM; MIGRAINE; PHEOCHROMOCYTOMA; and ANXIETY but adverse effects instigate replacement by newer drugs. Dexpropranolol,AY-20694,Anaprilin,Anapriline,Avlocardyl,Betadren,Dociton,Inderal,Obsidan,Obzidan,Propanolol,Propranolol Hydrochloride,Rexigen,AY 20694,AY20694,Hydrochloride, Propranolol
D011942 Receptors, Adrenergic, alpha One of the two major pharmacological subdivisions of adrenergic receptors that were originally defined by the relative potencies of various adrenergic compounds. The alpha receptors were initially described as excitatory receptors that post-junctionally stimulate SMOOTH MUSCLE contraction. However, further analysis has revealed a more complex picture involving several alpha receptor subtypes and their involvement in feedback regulation. Adrenergic alpha-Receptor,Adrenergic alpha-Receptors,Receptors, alpha-Adrenergic,alpha-Adrenergic Receptor,alpha-Adrenergic Receptors,Receptor, Adrenergic, alpha,Adrenergic alpha Receptor,Adrenergic alpha Receptors,Receptor, alpha-Adrenergic,Receptors, alpha Adrenergic,alpha Adrenergic Receptor,alpha Adrenergic Receptors,alpha-Receptor, Adrenergic,alpha-Receptors, Adrenergic
D011943 Receptors, Adrenergic, beta One of two major pharmacologically defined classes of adrenergic receptors. The beta adrenergic receptors play an important role in regulating CARDIAC MUSCLE contraction, SMOOTH MUSCLE relaxation, and GLYCOGENOLYSIS. Adrenergic beta-Receptor,Adrenergic beta-Receptors,Receptors, beta-Adrenergic,beta Adrenergic Receptor,beta-Adrenergic Receptor,beta-Adrenergic Receptors,Receptor, Adrenergic, beta,Adrenergic Receptor, beta,Adrenergic beta Receptor,Adrenergic beta Receptors,Receptor, beta Adrenergic,Receptor, beta-Adrenergic,Receptors, beta Adrenergic,beta Adrenergic Receptors,beta-Receptor, Adrenergic,beta-Receptors, Adrenergic
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D000344 Afferent Pathways Nerve structures through which impulses are conducted from a peripheral part toward a nerve center. Afferent Pathway,Pathway, Afferent,Pathways, Afferent

Related Publications

A G Sadile, and C Lamberti-D'Mello, and A Cerbone, and S Amoroso, and L Annunziato, and T Menna, and C Buono, and A Giuditta
December 1977, Journal of neurochemistry,
A G Sadile, and C Lamberti-D'Mello, and A Cerbone, and S Amoroso, and L Annunziato, and T Menna, and C Buono, and A Giuditta
April 1984, Mutation research,
A G Sadile, and C Lamberti-D'Mello, and A Cerbone, and S Amoroso, and L Annunziato, and T Menna, and C Buono, and A Giuditta
January 1989, Radiation and environmental biophysics,
A G Sadile, and C Lamberti-D'Mello, and A Cerbone, and S Amoroso, and L Annunziato, and T Menna, and C Buono, and A Giuditta
January 1981, Carcinogenesis,
A G Sadile, and C Lamberti-D'Mello, and A Cerbone, and S Amoroso, and L Annunziato, and T Menna, and C Buono, and A Giuditta
March 1991, Mechanisms of ageing and development,
A G Sadile, and C Lamberti-D'Mello, and A Cerbone, and S Amoroso, and L Annunziato, and T Menna, and C Buono, and A Giuditta
February 1984, Biochemical and biophysical research communications,
A G Sadile, and C Lamberti-D'Mello, and A Cerbone, and S Amoroso, and L Annunziato, and T Menna, and C Buono, and A Giuditta
January 1991, Doklady Akademii nauk SSSR,
A G Sadile, and C Lamberti-D'Mello, and A Cerbone, and S Amoroso, and L Annunziato, and T Menna, and C Buono, and A Giuditta
June 1992, Mutation research,
A G Sadile, and C Lamberti-D'Mello, and A Cerbone, and S Amoroso, and L Annunziato, and T Menna, and C Buono, and A Giuditta
January 1989, Environmental and molecular mutagenesis,
A G Sadile, and C Lamberti-D'Mello, and A Cerbone, and S Amoroso, and L Annunziato, and T Menna, and C Buono, and A Giuditta
March 1994, Mutagenesis,
Copied contents to your clipboard!