Relation of membrane potential to basolateral TEA transport in isolated snake proximal renal tubules. 1995

Y K Kim, and W H Dantzler
Department of Physiology, College of Medicine, University of Arizona, Tucson 85724, USA.

We measured the effects of changes in bath K+ concentration ([K+]) on basolateral membrane potential difference (PD) and [3H]tetraethylammonium (TEA) transport in isolated snake (Thamnophis) proximal renal tubules (25 degrees C; pH 7.4). Increasing bath [K+] from 3 to 65 mM decreased PD from -60 mV (inside of cells negative) to -20 mV and 2-min uptake of [3H]TEA by approximately 25%, indicating that PD influences TEA entry into the cells. Uptake of [3H]TEA was inhibited similarly at both K+ concentrations by unlabeled TEA, indicating that uptake is carrier mediated. Kt (approximately 18 microM) for 2-min uptake of [3H]TEA in 3 mM K+ increased significantly in 65 mM K+, suggesting that the decrease in PD or the increase in [K+] alters the affinity of the transporter for TEA. The steady-state cell-to-bath ratio for [3H]TEA with 3 mM K+ (-60 mV PD) was approximately 16, significantly above the ratio of 10 predicted for passive distribution at electrochemical equilibrium. With 65 mM K+ (-20 mV PD) this ratio decreased to approximately 6, again significantly above the predicted ratio of 2. These data suggest that the PD can account for much, but not all, of the steady-state uptake of TEA. Efflux of [3H]TEA across the basolateral membrane was identical with either 3 or 65 mM K+ in the bath but was almost completely inhibited in either case by tetrapentylammonium, a potent inhibitor of TEA uptake. These data indicate that virtually all TEA transport across the basolateral membrane is carrier mediated and that transport out of the cells is unaffected by PD.

UI MeSH Term Description Entries
D007687 Kidney Tubules, Proximal The renal tubule portion that extends from the BOWMAN CAPSULE in the KIDNEY CORTEX into the KIDNEY MEDULLA. The proximal tubule consists of a convoluted proximal segment in the cortex, and a distal straight segment descending into the medulla where it forms the U-shaped LOOP OF HENLE. Proximal Kidney Tubule,Proximal Renal Tubule,Kidney Tubule, Proximal,Proximal Kidney Tubules,Proximal Renal Tubules,Renal Tubule, Proximal,Renal Tubules, Proximal,Tubule, Proximal Kidney,Tubule, Proximal Renal,Tubules, Proximal Kidney,Tubules, Proximal Renal
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic
D013757 Tetraethylammonium Compounds Quaternary ammonium compounds that consist of an ammonium cation where the central nitrogen atom is bonded to four ethyl groups. Tetramon,Tetrylammonium,Compounds, Tetraethylammonium
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D014316 Tritium The radioactive isotope of hydrogen also known as hydrogen-3. It contains two NEUTRONS and one PROTON in its nucleus and decays to produce low energy BETA PARTICLES. Hydrogen-3,Hydrogen 3

Related Publications

Y K Kim, and W H Dantzler
November 1998, Pflugers Archiv : European journal of physiology,
Y K Kim, and W H Dantzler
March 1986, The American journal of physiology,
Y K Kim, and W H Dantzler
February 1973, The American journal of physiology,
Y K Kim, and W H Dantzler
March 1991, The Journal of membrane biology,
Y K Kim, and W H Dantzler
September 2004, American journal of physiology. Renal physiology,
Y K Kim, and W H Dantzler
February 1989, The American journal of physiology,
Y K Kim, and W H Dantzler
June 1991, Kidney international,
Y K Kim, and W H Dantzler
January 1988, The Journal of clinical investigation,
Y K Kim, and W H Dantzler
December 1976, The American journal of physiology,
Copied contents to your clipboard!