Relation of cysteine conjugate nephrotoxicity to transport by the basolateral organic anion transport system in isolated S2 segments of rabbit proximal renal tubules. 1998

W H Dantzler, and K K Evans, and C E Groves, and J R Welborn, and J North, and J L Stevens, and S H Wright
Department of Physiology, University of Arizona, Tucson, USA.

We examined basolateral transport of the radiolabeled zwitterionic nephrotoxic cysteine S-conjugate, S-(1,2-dichlorovinyl)-L-cysteine (DCVC), inhibition of such transport and the effects of inhibition of transport on the toxicity produced by DCVC in isolated S2 segments of rabbit proximal tubules. High concentrations of unlabeled DCVC itself and an unlabeled nontoxic cysteine S-conjugate, S-(2-benzothiazole)-L-cysteine cis-inhibited the basolateral uptake of radiolabeled DCVC by approximately 80 to 85%. High concentrations of para-aminohippurate, the prototype substrate for the basolateral organic anion transport system, and probenecid, a well-known inhibitor of basolateral organic anion transport, cis-inhibited the basolateral uptake of radiolabeled DCVC by approximately 70%, whereas a high concentration of L-phenylalanine had little effect. High concentrations of S-(2-benzothiazole)-L-cysteine and para-aminohippurate in the bathing medium with DCVC inhibited the loss of 86Rb (used as a K+ surrogate to measure toxicity) from S2 segments produced by DCVC alone to approximately the same extent as they inhibited uptake of DCVC. Under the same circumstances, probenecid completely inhibited 86Rb loss. These data indicate that in rabbit proximal renal S2 tubules basolateral entry of DCVC can occur to a major extent via the organic anion transport pathway and that inhibition of such entry can reduce toxicity to approximately the same extent that entry is reduced. They also suggest that probenecid provides additional protection from DCVC toxicity.

UI MeSH Term Description Entries
D007687 Kidney Tubules, Proximal The renal tubule portion that extends from the BOWMAN CAPSULE in the KIDNEY CORTEX into the KIDNEY MEDULLA. The proximal tubule consists of a convoluted proximal segment in the cortex, and a distal straight segment descending into the medulla where it forms the U-shaped LOOP OF HENLE. Proximal Kidney Tubule,Proximal Renal Tubule,Kidney Tubule, Proximal,Proximal Kidney Tubules,Proximal Renal Tubules,Renal Tubule, Proximal,Renal Tubules, Proximal,Tubule, Proximal Kidney,Tubule, Proximal Renal,Tubules, Proximal Kidney,Tubules, Proximal Renal
D011339 Probenecid The prototypical uricosuric agent. It inhibits the renal excretion of organic anions and reduces tubular reabsorption of urate. Probenecid has also been used to treat patients with renal impairment, and, because it reduces the renal tubular excretion of other drugs, has been used as an adjunct to antibacterial therapy. Benecid,Benemid,Benuryl,Pro-Cid,Probecid,Probenecid Weimer
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D003545 Cysteine A thiol-containing non-essential amino acid that is oxidized to form CYSTINE. Cysteine Hydrochloride,Half-Cystine,L-Cysteine,Zinc Cysteinate,Half Cystine,L Cysteine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic
D012414 Rubidium Radioisotopes Unstable isotopes of rubidium that decay or disintegrate emitting radiation. Rb atoms with atomic weights 79-84, and 86-95 are radioactive rubidium isotopes. Radioisotopes, Rubidium
D027321 Anion Transport Proteins Membrane proteins whose primary function is to facilitate the transport of negatively charged molecules (anions) across a biological membrane. Anion Pumps,ATPHPM,Anion Pump,Anion Transport Proteins (Hepatocyte Plasma Membrane),Pump, Anion,Pumps, Anion
D066298 In Vitro Techniques Methods to study reactions or processes taking place in an artificial environment outside the living organism. In Vitro Test,In Vitro Testing,In Vitro Tests,In Vitro as Topic,In Vitro,In Vitro Technique,In Vitro Testings,Technique, In Vitro,Techniques, In Vitro,Test, In Vitro,Testing, In Vitro,Testings, In Vitro,Tests, In Vitro,Vitro Testing, In

Related Publications

W H Dantzler, and K K Evans, and C E Groves, and J R Welborn, and J North, and J L Stevens, and S H Wright
April 1996, The Journal of pharmacology and experimental therapeutics,
W H Dantzler, and K K Evans, and C E Groves, and J R Welborn, and J North, and J L Stevens, and S H Wright
January 2000, American journal of physiology. Renal physiology,
W H Dantzler, and K K Evans, and C E Groves, and J R Welborn, and J North, and J L Stevens, and S H Wright
August 1993, The Journal of pharmacology and experimental therapeutics,
W H Dantzler, and K K Evans, and C E Groves, and J R Welborn, and J North, and J L Stevens, and S H Wright
November 1982, Kidney international,
W H Dantzler, and K K Evans, and C E Groves, and J R Welborn, and J North, and J L Stevens, and S H Wright
June 1995, The American journal of physiology,
W H Dantzler, and K K Evans, and C E Groves, and J R Welborn, and J North, and J L Stevens, and S H Wright
January 1991, Archives internationales de pharmacodynamie et de therapie,
W H Dantzler, and K K Evans, and C E Groves, and J R Welborn, and J North, and J L Stevens, and S H Wright
December 2000, American journal of physiology. Cell physiology,
W H Dantzler, and K K Evans, and C E Groves, and J R Welborn, and J North, and J L Stevens, and S H Wright
April 1995, The Journal of pharmacology and experimental therapeutics,
W H Dantzler, and K K Evans, and C E Groves, and J R Welborn, and J North, and J L Stevens, and S H Wright
December 1996, The Journal of pharmacology and experimental therapeutics,
W H Dantzler, and K K Evans, and C E Groves, and J R Welborn, and J North, and J L Stevens, and S H Wright
January 1998, The American journal of physiology,
Copied contents to your clipboard!