Effect of transforming growth factor-beta 1 and -beta 2 on Schwann cell proliferation on neurites. 1995

V Guénard, and T Rosenbaum, and L A Gwynn, and T Doetschman, and N Ratner, and P M Wood
Miami Project to Cure Paralysis, University of Miami School of Medicine, Florida 33136, USA.

Mechanisms regulating Schwann cell proliferation during development are unclear. Schwann cell division is known to be driven by an unidentified mitogen present on the surface of axons, but it is not known whether other molecules play a role in regulating this proliferation. Transforming growth factor-beta (TGF-beta) which is found in the developing peripheral nervous system (PNS) and is mitogenic for neuron-free Schwann cells in vitro could be involved. We have investigated the effects of TGF-beta 1, TGF-beta 2 and antibodies to TGF-beta 1 and TGF-beta 2 on axon driven Schwann cell proliferation. Rat embryonic dorsal root ganglion neurons (DRG) neurons and Schwann cells from the sciatic nerve were isolated, purified and recombined in vitro. Confirming earlier reports by others, we observed that TGF-beta 1 and TGF-beta 2 added to the culture medium stimulated the proliferation of Schwann cells in the absence of neurons. However, when added to neuron-Schwann cell co-cultures, TGF beta caused a variable response ranging from no effect to moderate inhibition of Schwann cell proliferation in different experiments. A stimulation of Schwann cell proliferation by TGF beta was never observed in neuron-Schwann cell co-cultures. Antibodies to TGF-beta 1 and TGF-beta 2 did not influence axon driven Schwann cell proliferation. To further determine the role of TGF-beta in Schwann cell proliferation and myelination, we studied Schwann cell proliferation in cultures from mice in which the TGF-beta 1 gene was delected by homologous recombination. Neuron-Schwann cell cultures from wild-type, heterozygous and homozygous mice were used. No differences were observed in either Schwann cell proliferation or myelination between cultures obtained from homozygous mutants and their heterozygous and wild-type controls. These findings suggest that TGF-beta does not function as a part of the mitogenic mechanism presented by neurons to Schwann cells, but that the presence of active TGF beta in the cellular environment might regulate the degree of proliferation induced by neuronal contact.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D009186 Myelin Sheath The lipid-rich sheath surrounding AXONS in both the CENTRAL NERVOUS SYSTEMS and PERIPHERAL NERVOUS SYSTEM. The myelin sheath is an electrical insulator and allows faster and more energetically efficient conduction of impulses. The sheath is formed by the cell membranes of glial cells (SCHWANN CELLS in the peripheral and OLIGODENDROGLIA in the central nervous system). Deterioration of the sheath in DEMYELINATING DISEASES is a serious clinical problem. Myelin,Myelin Sheaths,Sheath, Myelin,Sheaths, Myelin
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D005727 Ganglia, Spinal Sensory ganglia located on the dorsal spinal roots within the vertebral column. The spinal ganglion cells are pseudounipolar. The single primary branch bifurcates sending a peripheral process to carry sensory information from the periphery and a central branch which relays that information to the spinal cord or brain. Dorsal Root Ganglia,Spinal Ganglia,Dorsal Root Ganglion,Ganglion, Spinal,Ganglia, Dorsal Root,Ganglion, Dorsal Root,Spinal Ganglion
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012583 Schwann Cells Neuroglial cells of the peripheral nervous system which form the insulating myelin sheaths of peripheral axons. Schwann Cell,Cell, Schwann,Cells, Schwann
D012584 Sciatic Nerve A nerve which originates in the lumbar and sacral spinal cord (L4 to S3) and supplies motor and sensory innervation to the lower extremity. The sciatic nerve, which is the main continuation of the sacral plexus, is the largest nerve in the body. It has two major branches, the TIBIAL NERVE and the PERONEAL NERVE. Nerve, Sciatic,Nerves, Sciatic,Sciatic Nerves
D016212 Transforming Growth Factor beta A factor synthesized in a wide variety of tissues. It acts synergistically with TGF-alpha in inducing phenotypic transformation and can also act as a negative autocrine growth factor. TGF-beta has a potential role in embryonal development, cellular differentiation, hormone secretion, and immune function. TGF-beta is found mostly as homodimer forms of separate gene products TGF-beta1, TGF-beta2 or TGF-beta3. Heterodimers composed of TGF-beta1 and 2 (TGF-beta1.2) or of TGF-beta2 and 3 (TGF-beta2.3) have been isolated. The TGF-beta proteins are synthesized as precursor proteins. Bone-Derived Transforming Growth Factor,Platelet Transforming Growth Factor,TGF-beta,Milk Growth Factor,TGFbeta,Bone Derived Transforming Growth Factor,Factor, Milk Growth,Growth Factor, Milk
D016501 Neurites In tissue culture, hairlike projections of neurons stimulated by growth factors and other molecules. These projections may go on to form a branched tree of dendrites or a single axon or they may be reabsorbed at a later stage of development. "Neurite" may refer to any filamentous or pointed outgrowth of an embryonal or tissue-culture neural cell. Neurite

Related Publications

V Guénard, and T Rosenbaum, and L A Gwynn, and T Doetschman, and N Ratner, and P M Wood
April 1995, The Journal of cell biology,
V Guénard, and T Rosenbaum, and L A Gwynn, and T Doetschman, and N Ratner, and P M Wood
March 1991, Journal of cellular physiology,
V Guénard, and T Rosenbaum, and L A Gwynn, and T Doetschman, and N Ratner, and P M Wood
January 1991, Growth factors (Chur, Switzerland),
V Guénard, and T Rosenbaum, and L A Gwynn, and T Doetschman, and N Ratner, and P M Wood
August 1989, Clinical and experimental immunology,
V Guénard, and T Rosenbaum, and L A Gwynn, and T Doetschman, and N Ratner, and P M Wood
January 1987, Journal of cellular physiology. Supplement,
V Guénard, and T Rosenbaum, and L A Gwynn, and T Doetschman, and N Ratner, and P M Wood
January 2019, Ochsner journal,
V Guénard, and T Rosenbaum, and L A Gwynn, and T Doetschman, and N Ratner, and P M Wood
May 1986, Biochemical and biophysical research communications,
V Guénard, and T Rosenbaum, and L A Gwynn, and T Doetschman, and N Ratner, and P M Wood
December 1990, Endocrinology,
V Guénard, and T Rosenbaum, and L A Gwynn, and T Doetschman, and N Ratner, and P M Wood
December 1996, European journal of pharmacology,
V Guénard, and T Rosenbaum, and L A Gwynn, and T Doetschman, and N Ratner, and P M Wood
August 1991, Journal of immunology (Baltimore, Md. : 1950),
Copied contents to your clipboard!