Differential in vivo regulation of mRNA encoding the norepinephrine transporter and tyrosine hydroxylase in rat adrenal medulla and locus ceruleus. 1995

J F Cubells, and K S Kim, and H Baker, and B T Volpe, and Y Chung, and T A Houpt, and T C Wessel, and T H Joh
E. W. Bourne Behavioral Research Laboratory, Department of Psychiatry, Cornell University Medical College, White Plains, NY 10605, USA.

To investigate the regulation of norepinephrine transporter mRNA in vivo, we analyzed the effects of reserpine on its expression in the rat adrenal medulla and locus ceruleus. First, PCR was used to clone a 0.5-kb rat cDNA fragment that exhibits 87% nucleotide identity to the corresponding human norepinephrine transporter cDNA sequence. In situ, the cDNA hybridizes specifically within norepinephrine-secreting cells, but in neither dopamine nor serotonin neurons, suggesting strongly it is a partial rat norepinephrine transporter cDNA. Reserpine, 10 mg/kg administered 24 h premortem, decreased steady-state levels of norepinephrine transporter mRNA in the adrenal medulla by approximately 65% and in the locus ceruleus by approximately 25%, as determined by quantitative in situ hybridization. Northern analysis confirmed the results of the in situ hybridization analysis in the adrenal medulla but did not detect the smaller changes observed in the locus ceruleus. Both analyses showed that reserpine increased tyrosine hydroxylase expression in the adrenal medulla and locus ceruleus. These results suggest that noradrenergic neurons and adrenal chromaffin cells can coordinate opposing changes in systems mediating catecholamine uptake and synthesis, to compensate for catecholamine depletion.

UI MeSH Term Description Entries
D008125 Locus Coeruleus Bluish-colored region in the superior angle of the FOURTH VENTRICLE floor, corresponding to melanin-like pigmented nerve cells which lie lateral to the PERIAQUEDUCTAL GRAY. Locus Caeruleus Complex,Locus Caeruleus,Locus Ceruleus,Locus Ceruleus Complex,Locus Coeruleus Complex,Nucleus Pigmentosus Pontis,Caeruleus Complex, Locus,Complex, Locus Caeruleus,Complex, Locus Ceruleus,Complex, Locus Coeruleus,Pontis, Nucleus Pigmentosus
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D012110 Reserpine An alkaloid found in the roots of Rauwolfia serpentina and R. vomitoria. Reserpine inhibits the uptake of norepinephrine into storage vesicles resulting in depletion of catecholamines and serotonin from central and peripheral axon terminals. It has been used as an antihypertensive and an antipsychotic as well as a research tool, but its adverse effects limit its clinical use. Raunervil,Raupasil,Rausedil,Rausedyl,Serpasil,Serpivite,V-Serp,V Serp
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D000313 Adrenal Medulla The inner portion of the adrenal gland. Derived from ECTODERM, adrenal medulla consists mainly of CHROMAFFIN CELLS that produces and stores a number of NEUROTRANSMITTERS, mainly adrenaline (EPINEPHRINE) and NOREPINEPHRINE. The activity of the adrenal medulla is regulated by the SYMPATHETIC NERVOUS SYSTEM. Adrenal Medullas,Medulla, Adrenal,Medullas, Adrenal
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated

Related Publications

J F Cubells, and K S Kim, and H Baker, and B T Volpe, and Y Chung, and T A Houpt, and T C Wessel, and T H Joh
July 1995, Neuroscience letters,
J F Cubells, and K S Kim, and H Baker, and B T Volpe, and Y Chung, and T A Houpt, and T C Wessel, and T H Joh
July 2007, Brain research,
J F Cubells, and K S Kim, and H Baker, and B T Volpe, and Y Chung, and T A Houpt, and T C Wessel, and T H Joh
December 2000, Brain research. Molecular brain research,
J F Cubells, and K S Kim, and H Baker, and B T Volpe, and Y Chung, and T A Houpt, and T C Wessel, and T H Joh
January 1983, Cold Spring Harbor symposia on quantitative biology,
J F Cubells, and K S Kim, and H Baker, and B T Volpe, and Y Chung, and T A Houpt, and T C Wessel, and T H Joh
June 1995, Pediatric research,
J F Cubells, and K S Kim, and H Baker, and B T Volpe, and Y Chung, and T A Houpt, and T C Wessel, and T H Joh
October 1997, Journal of neuroendocrinology,
J F Cubells, and K S Kim, and H Baker, and B T Volpe, and Y Chung, and T A Houpt, and T C Wessel, and T H Joh
June 1997, The American journal of physiology,
J F Cubells, and K S Kim, and H Baker, and B T Volpe, and Y Chung, and T A Houpt, and T C Wessel, and T H Joh
December 1997, Journal of molecular endocrinology,
J F Cubells, and K S Kim, and H Baker, and B T Volpe, and Y Chung, and T A Houpt, and T C Wessel, and T H Joh
January 1993, Brain research,
J F Cubells, and K S Kim, and H Baker, and B T Volpe, and Y Chung, and T A Houpt, and T C Wessel, and T H Joh
June 1998, Brain research. Molecular brain research,
Copied contents to your clipboard!