Transcription of heat shock gene loci versus non-heat shock loci in Chironomus polytene chromosomes: evidence for heat-induced formation of novel putative ribonucleoprotein particles (hsRNPs) in the major heat shock puffs. 1995

H Sass
Institute of Genetics, Johannes Gutenberg University, Mainz, Germany.

The heat shock response of Chironomus polytene chromosomes was reexamined. The in vivo effects of heat shock on chromosomal [3H]uridine labeling, RNA polymerase II distribution and ribonucleoprotein (RNP) formation were investigated. One primary result is a clarification of the number and location of chromosomal sites strongly induced by treatment at 37 degrees C for 60 min. In total, seven major heat shock loci were identified by transcription autoradiography in Chironomus tentans: I-20A, II-16B, II-10C, II-4B, II-1C, III-12B, and IV-5C. Secondly, combining immunofluorescence with transcription autoradiography, I find RNA polymerase II occurring after heat shock at multiple chromosomal sites that were also active under normal conditions (20 degrees C). Furthermore, the results demonstrate conclusively that the presence of RNA polymerase II at heat shock and non-heat shock loci is generally correlated with [3H]uridine labeling during heat shock. These latter results extend and corroborate previous findings. Thirdly, the most striking result of this study was revealed in ultrathin sections of puffs by electron microscopy: I discerned a site-specific ultrastructural difference in putative RNP particles between heat shock versus non-heat shock loci. At least three of the seven induced major heat shock puffs (I-20A, III-12B, IV-5C) were observed to contain globular particles that were different, i.e. significantly larger, 250-1,000 A in diameter with a prominent 500-750 A class, than RNP particles of other loci under non-heat shock conditions. These large heat shock puff particles presumably represent nascent or newly synthesized heat shock RNA associated with protein(s) to form heat shock RNPs (hsRNPs). This finding suggests the possible involvement of novel RNPs (hsRNPs) in transcriptional regulation or heat shock RNA turnover and may stimulate further molecular investigations on this subject in both cell physiological and structural terms. I conclude that the locus-specific putative hsRNPs are an intrinsic property of greatly increased heat shock gene transcription.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D002683 Chironomidae A family of nonbiting midges, in the order DIPTERA. Salivary glands of the genus Chironomus are used in studies of cellular genetics and biochemistry. Chironomus,Midges, Nonbiting,Midge, Nonbiting,Nonbiting Midge,Nonbiting Midges
D002875 Chromosomes In a prokaryotic cell or in the nucleus of a eukaryotic cell, a structure consisting of or containing DNA which carries the genetic information essential to the cell. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Chromosome
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D006358 Hot Temperature Presence of warmth or heat or a temperature notably higher than an accustomed norm. Heat,Hot Temperatures,Temperature, Hot,Temperatures, Hot
D006360 Heat-Shock Proteins Proteins which are synthesized in eukaryotic organisms and bacteria in response to hyperthermia and other environmental stresses. They increase thermal tolerance and perform functions essential to cell survival under these conditions. Stress Protein,Stress Proteins,Heat-Shock Protein,Heat Shock Protein,Heat Shock Proteins,Protein, Stress
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001345 Autoradiography The making of a radiograph of an object or tissue by recording on a photographic plate the radiation emitted by radioactive material within the object. (Dorland, 27th ed) Radioautography
D012261 Ribonucleoproteins Complexes of RNA-binding proteins with ribonucleic acids (RNA). Ribonucleoprotein
D012319 RNA Polymerase II A DNA-dependent RNA polymerase present in bacterial, plant, and animal cells. It functions in the nucleoplasmic structure and transcribes DNA into RNA. It has different requirements for cations and salt than RNA polymerase I and is strongly inhibited by alpha-amanitin. EC 2.7.7.6. DNA-Dependent RNA Polymerase II,RNA Pol II,RNA Polymerase B,DNA Dependent RNA Polymerase II
Copied contents to your clipboard!