Analysis of 16,16-dimethylprostaglandin E2-induced diarrhea in cecectomized rats. 1994

I Shimizu, and K Kawashima, and N Yoshida, and T Ito
Department of Pharmacology, Dainippon Pharmaceutical Co., Ltd., Suita/Osaka, Japan.

The 16,16-dimethylprostaglandin E2 (dmPGE2)-induced diarrhea was analyzed in cecectomized rats prepared by resecting the cecum and its vasculature without disturbing the ileocecal junction. dmPGE2 (0.1-1.0 mg/kg, p.o.) dose-dependently increased the number of defecation episodes and induced a soft and watery stool in cecectomized rats. At 0.3 mg/kg, the diarrhea-inducing effects of dmPGE2 were more pronounced in cecectomized than in control rats. When given i.p., dmPGE2 (0.3 mg/kg) induced a watery stool in cecectomized and control rats with the same efficacy, although these effects were short-lasting as compared to oral administration. Castor oil (4 ml/kg, p.o.) also induced diarrhea, but did not produce a watery stool in cecectomized rats. There were no differences between cecectomized and control rats in basal small intestinal transits or in dmPGE2 (0.3 mg/kg, p.o.)-induced enhancements. Moreover, the basal and dmPGE2-induced jejunal net fluid transfers were the same in cecectomized and in control rats. On the other hand, the enhanced secretion of colonic fluid by dmPGE2, given intraluminally, was only half of that in control rats, whereas the colonic transit-enhancing effect of dmPGE2 in cecectomized rats was more pronounced than in control rats at 15 but not at 30 min after its administration. The basal colonic fluid contents and transits were the same in cecectomized and in control rats. Loperamide and morphine (0.1 and 1.0 mg/kg, s.c.) inhibited the dmPGE2 (0.3 mg/kg, p.o.)-induced diarrhea in cecectomized rats. N-methyllevallorphan (5 mg/kg, s.c.) completely antagonized the inhibitory effect of loperamide and partly antagonized the effect of morphine. These results suggest that oral administration of dmPGE2 induces a more pronounced secretory diarrhea in cecectomized than in control rats, probably due to the lack of the reservoir function of the cecum in the operated animals. This secretory diarrhea model is suitable for evaluating the antidiarrheal activity of drugs.

UI MeSH Term Description Entries
D007279 Injections, Subcutaneous Forceful administration under the skin of liquid medication, nutrient, or other fluid through a hollow needle piercing the skin. Subcutaneous Injections,Injection, Subcutaneous,Subcutaneous Injection
D007583 Jejunum The middle portion of the SMALL INTESTINE, between DUODENUM and ILEUM. It represents about 2/5 of the remaining portion of the small intestine below duodenum. Jejunums
D007977 Levallorphan An opioid antagonist with properties similar to those of NALOXONE; in addition it also possesses some agonist properties. It should be used cautiously; levallorphan reverses severe opioid-induced respiratory depression but may exacerbate respiratory depression such as that induced by alcohol or other non-opioid central depressants. (From Martindale, The Extra Pharmacopoeia, 30th ed, p683) Naloxiphan,Lorfan
D008139 Loperamide One of the long-acting synthetic ANTIDIARRHEALS; it is not significantly absorbed from the gut, and has no effect on the adrenergic system or central nervous system, but may antagonize histamine and interfere with acetylcholine release locally. Imodium,Loperamide Hydrochloride,Loperamide Monohydrochloride,R-18553,Hydrochloride, Loperamide,Monohydrochloride, Loperamide,R 18553,R18553
D008297 Male Males
D009020 Morphine The principal alkaloid in opium and the prototype opiate analgesic and narcotic. Morphine has widespread effects in the central nervous system and on smooth muscle. Morphine Sulfate,Duramorph,MS Contin,Morphia,Morphine Chloride,Morphine Sulfate (2:1), Anhydrous,Morphine Sulfate (2:1), Pentahydrate,Oramorph SR,SDZ 202-250,SDZ202-250,Chloride, Morphine,Contin, MS,SDZ 202 250,SDZ 202250,SDZ202 250,SDZ202250,Sulfate, Morphine
D002368 Castor Oil Oil obtained from seeds of Ricinus communis that is used as a cathartic and as a plasticizer. Oil, Castor
D002432 Cecum The blind sac or outpouching area of the LARGE INTESTINE that is below the entrance of the SMALL INTESTINE. It has a worm-like extension, the vermiform APPENDIX. Cecums
D003106 Colon The segment of LARGE INTESTINE between the CECUM and the RECTUM. It includes the ASCENDING COLON; the TRANSVERSE COLON; the DESCENDING COLON; and the SIGMOID COLON. Appendix Epiploica,Taenia Coli,Omental Appendices,Omental Appendix,Appendices, Omental,Appendix, Omental
D003198 Computer Simulation Computer-based representation of physical systems and phenomena such as chemical processes. Computational Modeling,Computational Modelling,Computer Models,In silico Modeling,In silico Models,In silico Simulation,Models, Computer,Computerized Models,Computer Model,Computer Simulations,Computerized Model,In silico Model,Model, Computer,Model, Computerized,Model, In silico,Modeling, Computational,Modeling, In silico,Modelling, Computational,Simulation, Computer,Simulation, In silico,Simulations, Computer

Related Publications

I Shimizu, and K Kawashima, and N Yoshida, and T Ito
February 1981, Prostaglandins and medicine,
I Shimizu, and K Kawashima, and N Yoshida, and T Ito
January 1982, Arzneimittel-Forschung,
I Shimizu, and K Kawashima, and N Yoshida, and T Ito
January 1992, Journal of clinical gastroenterology,
I Shimizu, and K Kawashima, and N Yoshida, and T Ito
June 1980, Journal of pharmaceutical sciences,
I Shimizu, and K Kawashima, and N Yoshida, and T Ito
October 1964, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
I Shimizu, and K Kawashima, and N Yoshida, and T Ito
February 1987, Japanese journal of pharmacology,
I Shimizu, and K Kawashima, and N Yoshida, and T Ito
August 1983, Digestive diseases and sciences,
Copied contents to your clipboard!