Structural characterization of the interaction between a pleckstrin homology domain and phosphatidylinositol 4,5-bisphosphate. 1995

J E Harlan, and H S Yoon, and P J Hajduk, and S W Fesik
Pharmaceutical Discovery Division, Abbott Laboratories, Abbott Park, Illinois 60064-3500, USA.

The pleckstrin homology (PH) domain is a protein module of approximately 100 amino acids that is found in several proteins involved in signal transduction [for a recent review, see Gibson et al. (1994) Trends Biochem. Sci. 19, 349-353]. Although the specific function of the PH domain has not yet been elucidated, many of the proteins which contain this domain associate with phospholipid membranes, and PH domains have been shown to bind to phosphatidylinositol 4,5-bisphosphate (PIP2) [Harlan et al. (1994) Nature 371, 168-170] and the beta gamma subunits of G-proteins [Touhara et al. (1994) J. Biol. Chem. 269, 10217-10220]. We have postulated that pleckstrin homology domains may be important for the translocation of proteins to the membrane by an interaction with the negatively charged head group of phospholipids. Here we show the importance of three conserved lysine residues for binding to PIP2 by site-directed mutagenesis. These results should aid future site-directed mutagenesis studies in probing the function of PIP2-PH domain interactions in the various proteins containing this module. In addition, we examine the specificity of this binding and illustrate the importance of charge--charge interactions in PIP2-PH domain complex formation from binding experiments involving PIP2 analogs.

UI MeSH Term Description Entries
D008239 Lysine An essential amino acid. It is often added to animal feed. Enisyl,L-Lysine,Lysine Acetate,Lysine Hydrochloride,Acetate, Lysine,L Lysine
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D010750 Phosphoproteins Phosphoprotein
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D001798 Blood Proteins Proteins that are present in blood serum, including SERUM ALBUMIN; BLOOD COAGULATION FACTORS; and many other types of proteins. Blood Protein,Plasma Protein,Plasma Proteins,Serum Protein,Serum Proteins,Protein, Blood,Protein, Plasma,Protein, Serum,Proteins, Blood,Proteins, Plasma,Proteins, Serum
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D016297 Mutagenesis, Site-Directed Genetically engineered MUTAGENESIS at a specific site in the DNA molecule that introduces a base substitution, or an insertion or deletion. Mutagenesis, Oligonucleotide-Directed,Mutagenesis, Site-Specific,Oligonucleotide-Directed Mutagenesis,Site-Directed Mutagenesis,Site-Specific Mutagenesis,Mutageneses, Oligonucleotide-Directed,Mutageneses, Site-Directed,Mutageneses, Site-Specific,Mutagenesis, Oligonucleotide Directed,Mutagenesis, Site Directed,Mutagenesis, Site Specific,Oligonucleotide Directed Mutagenesis,Oligonucleotide-Directed Mutageneses,Site Directed Mutagenesis,Site Specific Mutagenesis,Site-Directed Mutageneses,Site-Specific Mutageneses

Related Publications

J E Harlan, and H S Yoon, and P J Hajduk, and S W Fesik
December 2011, ACS chemical biology,
J E Harlan, and H S Yoon, and P J Hajduk, and S W Fesik
April 1999, Biochemistry,
J E Harlan, and H S Yoon, and P J Hajduk, and S W Fesik
January 1997, The Journal of biological chemistry,
J E Harlan, and H S Yoon, and P J Hajduk, and S W Fesik
May 2002, The Biochemical journal,
J E Harlan, and H S Yoon, and P J Hajduk, and S W Fesik
April 2016, The Journal of biological chemistry,
J E Harlan, and H S Yoon, and P J Hajduk, and S W Fesik
October 1996, The Journal of biological chemistry,
J E Harlan, and H S Yoon, and P J Hajduk, and S W Fesik
July 2015, Biochemistry and biophysics reports,
Copied contents to your clipboard!