High affinity binding of the pleckstrin homology domain of mSos1 to phosphatidylinositol (4,5)-bisphosphate. 1997

T J Kubiseski, and Y M Chook, and W E Parris, and M Rozakis-Adcock, and T Pawson
Program in Molecular Biology and Cancer, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada.

mSos1 has been implicated in coupling mammalian tyrosine kinases to the Ras GTPase. Because activation of Ras induced by growth factor stimulation likely requires the localization of mSos1 to the plasma membrane, we have investigated the possibility that the PH domain of mSos1 might mediate an interaction of mSos1 with phospholipid membranes. A glutathione S-transferase fusion protein containing the pleckstrin homology (PH) domain of mSos1 bound specifically and tightly to phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) with a Kd of 1.8 +/- 0.4 microM. This interaction was saturable and was competed away with the soluble head group of PI(4,5)P2, inositol 1,4, 5-triphosphate. Substitution of Arg452 within the PH domain with Ala had only a slight effect on binding to PI(4,5)P2, whereas substitution of Arg459 severely compromised the ability of the mSos1 PH domain to bind to PI(4,5)P2 containing vesicles. Purified full-length mSos1 and mSos1 complexed with Grb2 were also tested for binding to various phosphoinositol derivatives and demonstrated a specific interaction with PI(4,5)P2, although these interactions were weaker (Kd = approximately 53 and approximately 69 microM, respectively) than that of the PH domain alone. These findings suggest that the PH domain of mSos1 can interact in vitro with phospholipid vesicles containing PI(4,5)P2 and that this interaction is facilitated by the ionic interaction of Arg459 with the negatively charged head group of PI(4,5)P2. The association of the mSos1 PH domain with phospholipid may therefore play a role in regulating the function of this enzyme in vivo.

UI MeSH Term Description Entries
D008027 Light That portion of the electromagnetic spectrum in the visible, ultraviolet, and infrared range. Light, Visible,Photoradiation,Radiation, Visible,Visible Radiation,Photoradiations,Radiations, Visible,Visible Light,Visible Radiations
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010750 Phosphoproteins Phosphoprotein
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D012097 Repressor Proteins Proteins which maintain the transcriptional quiescence of specific GENES or OPERONS. Classical repressor proteins are DNA-binding proteins that are normally bound to the OPERATOR REGION of an operon, or the ENHANCER SEQUENCES of a gene until a signal occurs that causes their release. Repressor Molecules,Transcriptional Silencing Factors,Proteins, Repressor,Silencing Factors, Transcriptional
D001798 Blood Proteins Proteins that are present in blood serum, including SERUM ALBUMIN; BLOOD COAGULATION FACTORS; and many other types of proteins. Blood Protein,Plasma Protein,Plasma Proteins,Serum Protein,Serum Proteins,Protein, Blood,Protein, Plasma,Protein, Serum,Proteins, Blood,Proteins, Plasma,Proteins, Serum
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D005656 Fungal Proteins Proteins found in any species of fungus. Fungal Gene Products,Fungal Gene Proteins,Fungal Peptides,Gene Products, Fungal,Yeast Proteins,Gene Proteins, Fungal,Peptides, Fungal,Proteins, Fungal
D005982 Glutathione Transferase A transferase that catalyzes the addition of aliphatic, aromatic, or heterocyclic FREE RADICALS as well as EPOXIDES and arene oxides to GLUTATHIONE. Addition takes place at the SULFUR. It also catalyzes the reduction of polyol nitrate by glutathione to polyol and nitrite. Glutathione S-Alkyltransferase,Glutathione S-Aryltransferase,Glutathione S-Epoxidetransferase,Ligandins,S-Hydroxyalkyl Glutathione Lyase,Glutathione Organic Nitrate Ester Reductase,Glutathione S-Transferase,Glutathione S-Transferase 3,Glutathione S-Transferase A,Glutathione S-Transferase B,Glutathione S-Transferase C,Glutathione S-Transferase III,Glutathione S-Transferase P,Glutathione Transferase E,Glutathione Transferase mu,Glutathione Transferases,Heme Transfer Protein,Ligandin,Yb-Glutathione-S-Transferase,Glutathione Lyase, S-Hydroxyalkyl,Glutathione S Alkyltransferase,Glutathione S Aryltransferase,Glutathione S Epoxidetransferase,Glutathione S Transferase,Glutathione S Transferase 3,Glutathione S Transferase A,Glutathione S Transferase B,Glutathione S Transferase C,Glutathione S Transferase III,Glutathione S Transferase P,Lyase, S-Hydroxyalkyl Glutathione,P, Glutathione S-Transferase,Protein, Heme Transfer,S Hydroxyalkyl Glutathione Lyase,S-Alkyltransferase, Glutathione,S-Aryltransferase, Glutathione,S-Epoxidetransferase, Glutathione,S-Transferase 3, Glutathione,S-Transferase A, Glutathione,S-Transferase B, Glutathione,S-Transferase C, Glutathione,S-Transferase III, Glutathione,S-Transferase P, Glutathione,S-Transferase, Glutathione,Transfer Protein, Heme,Transferase E, Glutathione,Transferase mu, Glutathione,Transferase, Glutathione,Transferases, Glutathione

Related Publications

T J Kubiseski, and Y M Chook, and W E Parris, and M Rozakis-Adcock, and T Pawson
December 2011, ACS chemical biology,
T J Kubiseski, and Y M Chook, and W E Parris, and M Rozakis-Adcock, and T Pawson
September 1994, Nature,
T J Kubiseski, and Y M Chook, and W E Parris, and M Rozakis-Adcock, and T Pawson
October 1996, The Journal of biological chemistry,
T J Kubiseski, and Y M Chook, and W E Parris, and M Rozakis-Adcock, and T Pawson
December 1995, Biochemistry,
T J Kubiseski, and Y M Chook, and W E Parris, and M Rozakis-Adcock, and T Pawson
April 1999, Biochemistry,
T J Kubiseski, and Y M Chook, and W E Parris, and M Rozakis-Adcock, and T Pawson
August 1995, Biochemistry,
T J Kubiseski, and Y M Chook, and W E Parris, and M Rozakis-Adcock, and T Pawson
April 2016, The Journal of biological chemistry,
T J Kubiseski, and Y M Chook, and W E Parris, and M Rozakis-Adcock, and T Pawson
May 2002, The Biochemical journal,
T J Kubiseski, and Y M Chook, and W E Parris, and M Rozakis-Adcock, and T Pawson
July 2015, Biochemistry and biophysics reports,
T J Kubiseski, and Y M Chook, and W E Parris, and M Rozakis-Adcock, and T Pawson
May 1998, Oncogene,
Copied contents to your clipboard!