Mitochondrial proton conductance and H+/O ratio are independent of electron transport rate in isolated hepatocytes. 1995

R K Porter, and M D Brand
Department of Biochemistry, University of Cambridge, U.K.

In this paper we examine the non-linearity of the relationship between the proton electrochemical gradient across the mitochondrial inner membrane (delta p) and oxygen consumption of non-phosphorylating mitochondria in situ in hepatocytes. Models proposing to explain the non-linear relationship were tested experimentally. It was shown that the mitochondrial proton conductance and the number of protons pumped to the cytosolic side of the mitochondrial inner membrane by the electron transport complexes per oxygen atom consumed (H+/O ratio) are independent of electron transport rate in mitochondria in isolated hepatocytes. The non-linearity of the plot of delta p against the non-phosphorylating oxygen consumption is due to either a potential-dependent slippage of the proton pumps of the mitochondrial inner membrane and/or a potential-dependent leakage of protons back across the mitochondrial inner membrane.

UI MeSH Term Description Entries
D007425 Intracellular Membranes Thin structures that encapsulate subcellular structures or ORGANELLES in EUKARYOTIC CELLS. They include a variety of membranes associated with the CELL NUCLEUS; the MITOCHONDRIA; the GOLGI APPARATUS; the ENDOPLASMIC RETICULUM; LYSOSOMES; PLASTIDS; and VACUOLES. Membranes, Intracellular,Intracellular Membrane,Membrane, Intracellular
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008689 Methacrylates Acrylic acids or acrylates which are substituted in the C-2 position with a methyl group. Methacrylate
D008930 Mitochondria, Liver Mitochondria in hepatocytes. As in all mitochondria, there are an outer membrane and an inner membrane, together creating two separate mitochondrial compartments: the internal matrix space and a much narrower intermembrane space. In the liver mitochondrion, an estimated 67% of the total mitochondrial proteins is located in the matrix. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p343-4) Liver Mitochondria,Liver Mitochondrion,Mitochondrion, Liver
D009840 Oligomycins A closely related group of toxic substances elaborated by various strains of Streptomyces. They are 26-membered macrolides with lactone moieties and double bonds and inhibit various ATPases, causing uncoupling of phosphorylation from mitochondrial respiration. Used as tools in cytochemistry. Some specific oligomycins are RUTAMYCIN, peliomycin, and botrycidin (formerly venturicidin X). Oligomycin
D010085 Oxidative Phosphorylation Electron transfer through the cytochrome system liberating free energy which is transformed into high-energy phosphate bonds. Phosphorylation, Oxidative,Oxidative Phosphorylations,Phosphorylations, Oxidative
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell

Related Publications

R K Porter, and M D Brand
December 1976, Journal of cellular physiology,
R K Porter, and M D Brand
December 1976, The Journal of biological chemistry,
R K Porter, and M D Brand
September 1976, Doklady Akademii nauk SSSR,
R K Porter, and M D Brand
August 1990, The Journal of biological chemistry,
R K Porter, and M D Brand
June 1984, Biochemical Society transactions,
R K Porter, and M D Brand
December 1981, Journal of bioenergetics and biomembranes,
R K Porter, and M D Brand
August 1994, Biochimica et biophysica acta,
R K Porter, and M D Brand
September 1976, The Journal of biological chemistry,
R K Porter, and M D Brand
June 1983, Biokhimiia (Moscow, Russia),
Copied contents to your clipboard!