The influence of structured visual backgrounds on smooth-pursuit initiation, steady-state pursuit and smooth-pursuit termination. 1995

H Mohrmann, and P Thier
Sektion für Visuelle Sensomotorik, Neurologische Universitätsklinik, Tübingen, Germany.

Smooth-pursuit eye movements were recorded in two rhesus monkeys in order to compare the influence of structured visual backgrounds on smooth-pursuit initiation, steady-state pursuit and pursuit termination. Different target trajectories were used in order to study smooth-pursuit initiation and termination. The influence of visual backgrounds on pursuit initiation was characterized by recording ocular responses elicited by step-ramp target displacements starting from straight ahead. Pursuit termination was characterized by analysing the transition from steady-state smooth-pursuit to fixation when a centripetally directed target ramp was terminated by a small target step in the direction of the ramp as soon as the target had come close to the straightahead position. The quantification of steady-state pursuit was based on ocular responses elicited by either paradigm. In accordance with previous work, we found that the onset of smooth-pursuit eye movements was delayed and initial eye acceleration reduced in the presence of a structured visual background. Likewise, mean eye velocity during steady-state pursuit was reduced by structured visual backgrounds. However, neither the latency nor the time course of smooth-pursuit termination was altered when the homogeneous background was replaced by a structured visual background. The lack of sensitivity of pursuit termination to the presence of visual structured backgrounds supports a previous contention that pursuit termination is mediated by a process which is different from the ones mediating smooth-pursuit initiation and steady-state pursuit. The absence of any noticeable effect of structured backgrounds on pursuit termination suggests that at least the fast component of the optokinetic reflex is suppressed during pursuit termination.

UI MeSH Term Description Entries
D008253 Macaca mulatta A species of the genus MACACA inhabiting India, China, and other parts of Asia. The species is used extensively in biomedical research and adapts very well to living with humans. Chinese Rhesus Macaques,Macaca mulatta lasiota,Monkey, Rhesus,Rhesus Monkey,Rhesus Macaque,Chinese Rhesus Macaque,Macaca mulatta lasiotas,Macaque, Rhesus,Rhesus Macaque, Chinese,Rhesus Macaques,Rhesus Macaques, Chinese,Rhesus Monkeys
D008297 Male Males
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D011698 Pursuit, Smooth Eye movements that are slow, continuous, and conjugate and occur when a fixed object is moved slowly. Pursuits, Smooth,Smooth Pursuit,Smooth Pursuits
D005260 Female Females
D000465 Algorithms A procedure consisting of a sequence of algebraic formulas and/or logical steps to calculate or determine a given task. Algorithm
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

H Mohrmann, and P Thier
February 1995, Brain : a journal of neurology,
H Mohrmann, and P Thier
December 2021, Vision research,
H Mohrmann, and P Thier
April 2019, The Journal of neuroscience : the official journal of the Society for Neuroscience,
H Mohrmann, and P Thier
January 2002, Progress in brain research,
H Mohrmann, and P Thier
October 1986, Journal of neurophysiology,
Copied contents to your clipboard!