Inhibition by 5-hydroxytryptamine and noradrenaline in substantia gelatinosa of guinea-pig spinal trigeminal nucleus. 1995

T J Grudt, and J T Williams, and R A Travagli
Vollum Institute, Oregon Health Sciences University, Portland 97201, USA.

1. Whole-cell and intracellular recordings were made from neurons in slices of guinea-pig spinal trigeminal nucleus pars caudalis. 2. 5-Hydroxytryptamine (5-HT) hyperpolarized 70% of neurons by activating 5-HT1A receptors. The effect was mimicked by 5-carboxamidotryptamine (5-CT) and (+/-)-2-dipropylamino-8-hydroxy-1,2,3,4-tetrahydronapthalene hydrobromide (8-OH-DPAT) and antagonized by 1-(2-methoxyphenyl)-4-[4-(2-phthalimido)-butyl]-piperazine hydrobromide (NAN 190) and pindobind-5-HT1A. Nine per cent of the neurons were depolarized by 5-HT. 3. In about 20% of recordings, 5-HT also evoked repetitive inhibitory postsynaptic potentials that were mediated by glycine. 4. Noradrenaline (NA) hyperpolarized 71% of neurons. This effect was mediated by activation of alpha 2-adrenoceptors, since 5-bromo-N-(4,5-dihydro-1H-imidazol-2-yl)-6-quinoxalinamine (UK14304) also caused a hyperpolarization and idazoxan (1 microM) blocked the hyperpolarization to both NA and UK14304. Phenylephrine depolarized a subset of neurons and this depolarization was blocked by prazosin, suggesting an action mediated by activation of alpha 1-adrenoceptors. 5. NA also evoked repetitive GABAA-mediated inhibitory postsynaptic potentials in about 20% of recordings. The increase in synaptic activity was mimicked by phenylephrine and blocked by prazosin. 6. These results indicate that there are at least two mechanisms through which 5-HT and NA inhibit neurons: (i) in many cells both 5-HT and NA mediate a hyperpolarization through an increase of a potassium conductance; (ii) 5-HT and NA also activated GABA- and glycine-containing interneurons to cause IPSPs in separate groups of cells.

UI MeSH Term Description Entries
D008297 Male Males
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009619 Nociceptors Peripheral AFFERENT NEURONS which are sensitive to injuries or pain, usually caused by extreme thermal exposures, mechanical forces, or other noxious stimuli. Their cell bodies reside in the DORSAL ROOT GANGLIA. Their peripheral terminals (NERVE ENDINGS) innervate target tissues and transduce noxious stimuli via axons to the CENTRAL NERVOUS SYSTEM. Pain Receptors,Receptors, Pain,Nociceptive Neurons,Neuron, Nociceptive,Neurons, Nociceptive,Nociceptive Neuron,Nociceptor,Pain Receptor
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D011810 Quinoxalines Quinoxaline
D011963 Receptors, GABA-A Cell surface proteins which bind GAMMA-AMINOBUTYRIC ACID and contain an integral membrane chloride channel. Each receptor is assembled as a pentamer from a pool of at least 19 different possible subunits. The receptors belong to a superfamily that share a common CYSTEINE loop. Benzodiazepine-Gaba Receptors,GABA-A Receptors,Receptors, Benzodiazepine,Receptors, Benzodiazepine-GABA,Receptors, Diazepam,Receptors, GABA-Benzodiazepine,Receptors, Muscimol,Benzodiazepine Receptor,Benzodiazepine Receptors,Benzodiazepine-GABA Receptor,Diazepam Receptor,Diazepam Receptors,GABA(A) Receptor,GABA-A Receptor,GABA-A Receptor alpha Subunit,GABA-A Receptor beta Subunit,GABA-A Receptor delta Subunit,GABA-A Receptor epsilon Subunit,GABA-A Receptor gamma Subunit,GABA-A Receptor rho Subunit,GABA-Benzodiazepine Receptor,GABA-Benzodiazepine Receptors,Muscimol Receptor,Muscimol Receptors,delta Subunit, GABA-A Receptor,epsilon Subunit, GABA-A Receptor,gamma-Aminobutyric Acid Subtype A Receptors,Benzodiazepine GABA Receptor,Benzodiazepine Gaba Receptors,GABA A Receptor,GABA A Receptor alpha Subunit,GABA A Receptor beta Subunit,GABA A Receptor delta Subunit,GABA A Receptor epsilon Subunit,GABA A Receptor gamma Subunit,GABA A Receptor rho Subunit,GABA A Receptors,GABA Benzodiazepine Receptor,GABA Benzodiazepine Receptors,Receptor, Benzodiazepine,Receptor, Benzodiazepine-GABA,Receptor, Diazepam,Receptor, GABA-A,Receptor, GABA-Benzodiazepine,Receptor, Muscimol,Receptors, Benzodiazepine GABA,Receptors, GABA A,Receptors, GABA Benzodiazepine,delta Subunit, GABA A Receptor,epsilon Subunit, GABA A Receptor,gamma Aminobutyric Acid Subtype A Receptors
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D000068438 Brimonidine Tartrate A quinoxaline derivative and ADRENERGIC ALHPA-2 RECEPTOR AGONIST that is used to manage INTRAOCULAR PRESSURE associated with OPEN-ANGLE GLAUCOMA and OCULAR HYPERTENSION. 5-Bromo-6-(2-imidazolin-2-ylamino)quinoxaline D-tartrate,5-bromo-6-(imidazolidinylideneamino)quinoxaline,5-bromo-6-(imidazolin-2-ylamino)quinoxaline,AGN 190342,AGN-190342,Alphagan,Alphagan P,Brimonidine,Brimonidine Purite,Brimonidine Tartrate (1:1),Brimonidine Tartrate (1:1), (S-(R*,R*))-Isomer,Brimonidine Tartrate, (R-(R*,R*))-Isomer,Bromoxidine,Mirvaso,Ratio-Brimonidine,Sanrosa,UK 14,304,UK 14,304-18,UK 14304,UK 14308,UK-14,304-18,UK-14,308,UK-14304,AGN190342,Ratio Brimonidine,UK 14,304 18,UK 14,30418,UK 14,308,UK14,30418,UK14,308,UK14304
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

T J Grudt, and J T Williams, and R A Travagli
December 1996, Journal of neurophysiology,
T J Grudt, and J T Williams, and R A Travagli
August 1975, The Journal of comparative neurology,
T J Grudt, and J T Williams, and R A Travagli
May 1998, The Journal of neuroscience : the official journal of the Society for Neuroscience,
T J Grudt, and J T Williams, and R A Travagli
May 1976, The Journal of comparative neurology,
T J Grudt, and J T Williams, and R A Travagli
September 2011, BMC anesthesiology,
T J Grudt, and J T Williams, and R A Travagli
June 1974, Journal of neurocytology,
T J Grudt, and J T Williams, and R A Travagli
August 2008, Neuroscience letters,
T J Grudt, and J T Williams, and R A Travagli
May 1999, Okajimas folia anatomica Japonica,
Copied contents to your clipboard!