Stimulation of D1- or D2-receptors in drug-naive rats with different degrees of unilateral nigro-striatal dopamine lesions. 1995

J Fornaguera, and J P Huston, and R J Carey, and R K Schwarting
Institute of Physiological Psychology, Heinrich-Heine University of Düsseldorf, Germany.

We had previously found that in animals with moderate nigro-striatal dopamine (DA) lesions (i.e. 45-65% residual neostriatal DA) the mixed D1/D2-agonist apomorphine induced ipsiversive rather than the usual contraversive turning found after more radical DA lesions. Since this result promised to provide a behavioral animal model for pre-clinical Parkinson's disease, we hoped to delineate the responsible receptor by challenging with selective D1- and D2-agonists. Thus, in the present study, the behavioral effects of the D1-agonist SKF38393 (5.0 mg/kg) and the D2-agonist LY171555 (0.5 mg/kg) were tested in drug-naive rats with unilateral 6-hydroxydopamine lesions of the nigro-striatal DA system. This analysis was performed dependent on the degree of the lesion, classified post-mortem with respect to the level of residual DA in the neostriatum: < 20%, 20-45%, 45-65%, and > 65% (as percentage of the intact hemisphere). The measures of turning, thigmotactic scanning and locomotion did not yield differences between animals treated with the D1-agonist and vehicle-treated rats. For example, animals with severe lesions (residual DA < 20%) showed ipsiversive asymmetries in turning and scanning, which were similar after vehicle or the D1-agonist, both with respect to degree and time-course. However, the analysis of grooming behavior, which was performed in a subset of animals with moderate lesions yielded differences between vehicle and the D1-agonist, since the duration of grooming was increased after SKF38393. In contrast to the D1-agonist, behavioral effects after the D2-agonist LY17155 were evident in all behavioral measures. The general response to this agonist could be characterized by a rapid decrease of behavioral activity including turning, scanning, locomotion and grooming. Although we failed to find significant behavioral asymmetries with either agonist, a micro-analysis showed evidence for selective effects after the D2-agonist, since a contraversive asymmetry in turning (and scanning) became apparent between 45 and 60 min after injection in animals with severe lesions (residual DA of about 10% or less), and since there was a weak ipsiversive turning asymmetry in animals with residual DA levels of 45-65%. Such asymmetries were not observed after vehicle or the D1-agonist. The possible physiological mechanisms of these effects, i.e. DA receptor mechanisms and DA availability, are discussed in the context of results from previous experiments using lesioned or intact animals.

UI MeSH Term Description Entries
D008124 Locomotion Movement or the ability to move from one place or another. It can refer to humans, vertebrate or invertebrate animals, and microorganisms. Locomotor Activity,Activities, Locomotor,Activity, Locomotor,Locomotor Activities
D008297 Male Males
D009410 Nerve Degeneration Loss of functional activity and trophic degeneration of nerve axons and their terminal arborizations following the destruction of their cells of origin or interruption of their continuity with these cells. The pathology is characteristic of neurodegenerative diseases. Often the process of nerve degeneration is studied in research on neuroanatomical localization and correlation of the neurophysiology of neural pathways. Neuron Degeneration,Degeneration, Nerve,Degeneration, Neuron,Degenerations, Nerve,Degenerations, Neuron,Nerve Degenerations,Neuron Degenerations
D010300 Parkinson Disease A progressive, degenerative neurologic disease characterized by a TREMOR that is maximal at rest, retropulsion (i.e. a tendency to fall backwards), rigidity, stooped posture, slowness of voluntary movements, and a masklike facial expression. Pathologic features include loss of melanin containing neurons in the substantia nigra and other pigmented nuclei of the brainstem. LEWY BODIES are present in the substantia nigra and locus coeruleus but may also be found in a related condition (LEWY BODY DISEASE, DIFFUSE) characterized by dementia in combination with varying degrees of parkinsonism. (Adams et al., Principles of Neurology, 6th ed, p1059, pp1067-75) Idiopathic Parkinson Disease,Lewy Body Parkinson Disease,Paralysis Agitans,Primary Parkinsonism,Idiopathic Parkinson's Disease,Lewy Body Parkinson's Disease,Parkinson Disease, Idiopathic,Parkinson's Disease,Parkinson's Disease, Idiopathic,Parkinson's Disease, Lewy Body,Parkinsonism, Primary
D004298 Dopamine One of the catecholamine NEUROTRANSMITTERS in the brain. It is derived from TYROSINE and is the precursor to NOREPINEPHRINE and EPINEPHRINE. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (RECEPTORS, DOPAMINE) mediate its action. Hydroxytyramine,3,4-Dihydroxyphenethylamine,4-(2-Aminoethyl)-1,2-benzenediol,Dopamine Hydrochloride,Intropin,3,4 Dihydroxyphenethylamine,Hydrochloride, Dopamine
D004873 Ergolines A series of structurally-related alkaloids that contain the ergoline backbone structure. Ergoline
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001522 Behavior, Animal The observable response an animal makes to any situation. Autotomy Animal,Animal Behavior,Animal Behaviors
D013378 Substantia Nigra The black substance in the ventral midbrain or the nucleus of cells containing the black substance. These cells produce DOPAMINE, an important neurotransmitter in regulation of the sensorimotor system and mood. The dark colored MELANIN is a by-product of dopamine synthesis. Nigra, Substantia,Nigras, Substantia,Substantia Nigras
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor

Related Publications

J Fornaguera, and J P Huston, and R J Carey, and R K Schwarting
January 1997, Brain research bulletin,
J Fornaguera, and J P Huston, and R J Carey, and R K Schwarting
January 2003, Pain,
J Fornaguera, and J P Huston, and R J Carey, and R K Schwarting
January 1995, Polish journal of pharmacology,
J Fornaguera, and J P Huston, and R J Carey, and R K Schwarting
February 1990, Neuroscience letters,
J Fornaguera, and J P Huston, and R J Carey, and R K Schwarting
July 1990, European journal of pharmacology,
J Fornaguera, and J P Huston, and R J Carey, and R K Schwarting
January 1994, Journal of physiology, Paris,
J Fornaguera, and J P Huston, and R J Carey, and R K Schwarting
June 1988, Journal of neurochemistry,
J Fornaguera, and J P Huston, and R J Carey, and R K Schwarting
January 1979, Brain research bulletin,
J Fornaguera, and J P Huston, and R J Carey, and R K Schwarting
April 2004, Brain research,
J Fornaguera, and J P Huston, and R J Carey, and R K Schwarting
May 2015, Psychopharmacology,
Copied contents to your clipboard!