Saccade-related activity in monkey superior colliculus. I. Characteristics of burst and buildup cells. 1995

D P Munoz, and R H Wurtz
Laboratory of Sensorimotor Research, National Eye Institute, Bethesda, Maryland 20892-4435, USA.

1. In the monkey superior colliculus (SC), the activity of most saccade-related neurons studied so far consists of a burst of activity in a population of cells at one place on the SC movement map. In contrast, recent experiments in the cat have described saccade-related activity as a slow increase in discharge before saccades followed by a hill of activity moving across the SC map. In order to explore this striking difference in the distribution of activity across the SC, we recorded from all saccade-related neurons that we encountered in microelectrode penetrations through the monkey SC and placed them in categories according to their activity during the generation of saccades. 2. When we considered the activity preceding the onset of the saccade, we could divide the cells into two categories. Cells with burst activity had a high-frequency discharge just before saccade onset but little activity between the signal to make a saccade and saccade onset. About two thirds of the saccade-related cells had only a burst of activity. Cells with a buildup of activity began to discharge at a low frequency after the signal to make a saccade and the discharge continued until generation of the saccade. About one third of the saccade-related cells studied had a buildup of activity, and about three fourths of these cells also gave a burst of activity with the saccade in addition to the slow buildup of activity. 3. The buildup of activity seemed to be more closely related to preparation to make a saccade than to the generation of the saccade. The buildup developed even in cases when no saccade occurred. 4. The falling phase of the discharge of these saccade-related cells stopped with the end of the saccade (a clipped discharge), shortly after the end of the saccade (partially clipped), or long after the end of the saccade (unclipped). 5. Some cells had closed movement fields in which saccades that were substantially smaller or larger than the optimal amplitude were not associated with increased activity. Other cells tended to have open-ended movement fields without any peripheral border; they were active for all saccades of optimal direction whose amplitudes were equal to or greater than a given amplitude.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D008253 Macaca mulatta A species of the genus MACACA inhabiting India, China, and other parts of Asia. The species is used extensively in biomedical research and adapts very well to living with humans. Chinese Rhesus Macaques,Macaca mulatta lasiota,Monkey, Rhesus,Rhesus Monkey,Rhesus Macaque,Chinese Rhesus Macaque,Macaca mulatta lasiotas,Macaque, Rhesus,Rhesus Macaque, Chinese,Rhesus Macaques,Rhesus Macaques, Chinese,Rhesus Monkeys
D008297 Male Males
D008568 Memory Complex mental function having four distinct phases: (1) memorizing or learning, (2) retention, (3) recall, and (4) recognition. Clinically, it is usually subdivided into immediate, recent, and remote memory.
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010775 Photic Stimulation Investigative technique commonly used during ELECTROENCEPHALOGRAPHY in which a series of bright light flashes or visual patterns are used to elicit brain activity. Stimulation, Photic,Visual Stimulation,Photic Stimulations,Stimulation, Visual,Stimulations, Photic,Stimulations, Visual,Visual Stimulations
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001522 Behavior, Animal The observable response an animal makes to any situation. Autotomy Animal,Animal Behavior,Animal Behaviors
D012438 Saccades An abrupt voluntary shift in ocular fixation from one point to another, as occurs in reading. Pursuit, Saccadic,Saccadic Eye Movements,Eye Movement, Saccadic,Eye Movements, Saccadic,Movement, Saccadic Eye,Movements, Saccadic Eye,Pursuits, Saccadic,Saccade,Saccadic Eye Movement,Saccadic Pursuit,Saccadic Pursuits
D013477 Superior Colliculi The anterior pair of the quadrigeminal bodies which coordinate the general behavioral orienting responses to visual stimuli, such as whole-body turning, and reaching. Colliculus, Superior,Optic Lobe, Human,Optic Lobe, Mammalian,Optic Tectum,Anterior Colliculus,Superior Colliculus,Tectum, Optic,Colliculi, Superior,Colliculus, Anterior,Human Optic Lobe,Human Optic Lobes,Mammalian Optic Lobe,Mammalian Optic Lobes,Optic Lobes, Human,Optic Lobes, Mammalian,Optic Tectums,Tectums, Optic

Related Publications

D P Munoz, and R H Wurtz
April 1987, Brain research,
D P Munoz, and R H Wurtz
August 1998, Journal of neurophysiology,
D P Munoz, and R H Wurtz
June 2007, Journal of neurophysiology,
D P Munoz, and R H Wurtz
January 1990, Experimental brain research,
D P Munoz, and R H Wurtz
January 2009, Experimental brain research,
Copied contents to your clipboard!