Two-dimensional saccade-related population activity in superior colliculus in monkey. 1998

R W Anderson, and E L Keller, and N J Gandhi, and S Das
Smith-Kettlewell Eye Research Institute, San Francisco, CA 94115, USA.

The two-dimensional distribution of population activity in the superior colliculus (SC) during saccadic eye movements in the monkey was estimated using radial basis functions. To make these ensemble activity estimates, cells in the deeper layers of the SC were recorded over much of the rostrocaudal (caudal to 3.8 mm from the rostral tip), mediolateral extent of this structure. The dynamic movement field of each cell was determined at 2-ms intervals around the time of saccades for a wide variety of horizontal and oblique movements. Collicular neurons were divided into partially overlapping dorsal and ventral cell layers on the basis of recorded depth in SC. The pattern of presaccadic activity was used as an additional discriminant to sort the cells in the two layers into separate burst (dorsal) and buildup (ventral) cell classes. Rostrocaudal and medioventral cell location on the colliculus was estimated from the optimal target vector for a cell's visual response rather than from the optimal motor vector. The former technique was more reliable for locating some buildup neurons because it produced locations that compared better with the locations suggested by electrical stimulation. From the movement field data and from the estimates of each cell's anatomic location, a similar algorithm was used to compute the two-dimensional population activity in the two layers of the SC during horizontal and oblique saccades. A subset of the sample of neurons, located near the horizontal meridian of the SC, first was used to compute one-dimensional dynamic population activity estimates for horizontal saccades to allow partial comparison to previous studies. Statistical analyses on the one-dimensional data were limited to saccades of </=20 degrees. The analyses indicated that while there was a small rostrally directed shift in the center of gravity of the distributed activity in the buildup cell layer, there was little support for the theory of a systematic rostrally directed spread of the leading edge of the activity. The two-dimensional results extend the previous one-dimensional estimates of collicular activity during saccades. Discharge in the burst layer was invariant in size for all saccade vectors and symmetrically arranged about a center of gravity that did not move during saccades. The size of the active area in the buildup layer grew modestly with saccade amplitude, whereas the distribution of activity was skewed toward the rostral end of the SC for saccades larger than 10 degrees. There was a small, but consistent shift in the center of gravity of the two-dimensional activity that was directed along the horizontal meridian (for horizontal movements) or an oblique meridian (for oblique movements) of the SC. However, the spread of activity during a saccade was as large or larger in the mediolateral direction as it was in the rostral direction. The results indicate that changes in activity occur in an extended zone on the SC, and in all directions but caudal, in the buildup layer during saccades and do not support the idea of a rostrally directed spread of activity as a dynamic control mechanism for saccades. Our results and those of previous investigators of collicular population activity may be limited by stationarity concerns in that the cells used to estimate population activity were recorded in several monkeys over an extended period of time to obtain a sufficient spatial sample.

UI MeSH Term Description Entries
D007395 Interneurons Most generally any NEURONS which are not motor or sensory. Interneurons may also refer to neurons whose AXONS remain within a particular brain region in contrast to projection neurons, which have axons projecting to other brain regions. Intercalated Neurons,Intercalated Neuron,Interneuron,Neuron, Intercalated,Neurons, Intercalated
D008252 Macaca fascicularis A species of the genus MACACA which typically lives near the coast in tidal creeks and mangrove swamps primarily on the islands of the Malay peninsula. Burmese Long-Tailed Macaque,Crab-Eating Monkey,Cynomolgus Monkey,M. f. aurea,M. fascicularis,Macaca fascicularis aurea,Monkey, Crab-Eating,Monkey, Cynomolgus,Crab-Eating Macaque,Burmese Long Tailed Macaque,Crab Eating Macaque,Crab Eating Monkey,Crab-Eating Macaques,Crab-Eating Monkeys,Cynomolgus Monkeys,Long-Tailed Macaque, Burmese,Macaque, Burmese Long-Tailed,Macaque, Crab-Eating,Monkey, Crab Eating
D008253 Macaca mulatta A species of the genus MACACA inhabiting India, China, and other parts of Asia. The species is used extensively in biomedical research and adapts very well to living with humans. Chinese Rhesus Macaques,Macaca mulatta lasiota,Monkey, Rhesus,Rhesus Monkey,Rhesus Macaque,Chinese Rhesus Macaque,Macaca mulatta lasiotas,Macaque, Rhesus,Rhesus Macaque, Chinese,Rhesus Macaques,Rhesus Macaques, Chinese,Rhesus Monkeys
D008297 Male Males
D009046 Motor Neurons Neurons which activate MUSCLE CELLS. Neurons, Motor,Alpha Motorneurons,Motoneurons,Motor Neurons, Alpha,Neurons, Alpha Motor,Alpha Motor Neuron,Alpha Motor Neurons,Alpha Motorneuron,Motoneuron,Motor Neuron,Motor Neuron, Alpha,Motorneuron, Alpha,Motorneurons, Alpha,Neuron, Alpha Motor,Neuron, Motor
D009475 Neurons, Afferent Neurons which conduct NERVE IMPULSES to the CENTRAL NERVOUS SYSTEM. Afferent Neurons,Afferent Neuron,Neuron, Afferent
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D000465 Algorithms A procedure consisting of a sequence of algebraic formulas and/or logical steps to calculate or determine a given task. Algorithm
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

R W Anderson, and E L Keller, and N J Gandhi, and S Das
June 1998, Brain research bulletin,
R W Anderson, and E L Keller, and N J Gandhi, and S Das
June 1995, Journal of neurophysiology,
R W Anderson, and E L Keller, and N J Gandhi, and S Das
June 2007, Journal of neurophysiology,
R W Anderson, and E L Keller, and N J Gandhi, and S Das
June 1995, Journal of neurophysiology,
R W Anderson, and E L Keller, and N J Gandhi, and S Das
January 1990, Experimental brain research,
R W Anderson, and E L Keller, and N J Gandhi, and S Das
May 1980, Brain research,
R W Anderson, and E L Keller, and N J Gandhi, and S Das
January 2009, Experimental brain research,
R W Anderson, and E L Keller, and N J Gandhi, and S Das
April 1987, Brain research,
R W Anderson, and E L Keller, and N J Gandhi, and S Das
May 1999, Journal of neurophysiology,
R W Anderson, and E L Keller, and N J Gandhi, and S Das
May 1991, Science (New York, N.Y.),
Copied contents to your clipboard!