Long-duration, frequency-dependent motor responses evoked by ventrolateral funiculus stimulation in the neonatal rat spinal cord. 1995

D S Magnuson, and M J Schramm, and J N MacLean
Spinal Cord Research Centre, University of Manitoba, Winnipeg, Canada.

Three variations of the in vitro neonatal rat spinal cord preparation were used to investigate motor responses to stimulation of the ventrolateral funiculus (VLF). In a partially hemisected spinal cord preparation, stimuli elicited frequency-dependent activity in lumbar ventral roots that outlasted the stimulus train by up to 30 s. In a spinal cord-hindlimb preparation, trains of VLF stimuli elicited slow, step-like flexor-extensor hindlimb movement that also persisted for up to 30 s beyond the stimulus. Finally, in a partially hemisected spinal cord preparation where 5-hydroxytryptamine/N-methyl-D-aspartate was used to induce locomotor-like rhythmic activity, short trains of VLF stimuli were capable of perturbing the locomotor rhythm, transiently altering its frequency. Application of pharmacological antagonists suggests that these responses may be the result of stimulation of a descending pathway that includes glutamatergic and catecholaminergic fibres comprising part of a descending locomotor command path.

UI MeSH Term Description Entries
D008161 Lumbosacral Region Region of the back including the LUMBAR VERTEBRAE, SACRUM, and nearby structures. Lumbar Region,Lumbar Regions,Lumbosacral Regions,Region, Lumbar,Region, Lumbosacral,Regions, Lumbar,Regions, Lumbosacral
D009043 Motor Activity Body movements of a human or an animal as a behavioral phenomenon. Activities, Motor,Activity, Motor,Motor Activities
D011930 Reaction Time The time from the onset of a stimulus until a response is observed. Response Latency,Response Speed,Response Time,Latency, Response,Reaction Times,Response Latencies,Response Times,Speed, Response,Speeds, Response
D003714 Denervation The resection or removal of the nerve to an organ or part. Laser Neurectomy,Neurectomy,Peripheral Neurectomy,Radiofrequency Neurotomy,Denervations,Laser Neurectomies,Neurectomies,Neurectomies, Laser,Neurectomies, Peripheral,Neurectomy, Laser,Neurectomy, Peripheral,Neurotomies, Radiofrequency,Neurotomy, Radiofrequency,Peripheral Neurectomies,Radiofrequency Neurotomies
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D006614 Hindlimb Either of two extremities of four-footed non-primate land animals. It usually consists of a FEMUR; TIBIA; and FIBULA; tarsals; METATARSALS; and TOES. (From Storer et al., General Zoology, 6th ed, p73) Hindlimbs
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000831 Animals, Newborn Refers to animals in the period of time just after birth. Animals, Neonatal,Animal, Neonatal,Animal, Newborn,Neonatal Animal,Neonatal Animals,Newborn Animal,Newborn Animals
D013116 Spinal Cord A cylindrical column of tissue that lies within the vertebral canal. It is composed of WHITE MATTER and GRAY MATTER. Coccygeal Cord,Conus Medullaris,Conus Terminalis,Lumbar Cord,Medulla Spinalis,Myelon,Sacral Cord,Thoracic Cord,Coccygeal Cords,Conus Medullari,Conus Terminali,Cord, Coccygeal,Cord, Lumbar,Cord, Sacral,Cord, Spinal,Cord, Thoracic,Cords, Coccygeal,Cords, Lumbar,Cords, Sacral,Cords, Spinal,Cords, Thoracic,Lumbar Cords,Medulla Spinali,Medullari, Conus,Medullaris, Conus,Myelons,Sacral Cords,Spinal Cords,Spinali, Medulla,Spinalis, Medulla,Terminali, Conus,Terminalis, Conus,Thoracic Cords
D013126 Spinal Nerve Roots Paired bundles of NERVE FIBERS entering and leaving the SPINAL CORD at each segment. The dorsal and ventral nerve roots join to form the mixed segmental spinal nerves. The dorsal roots are generally afferent, formed by the central projections of the spinal (dorsal root) ganglia sensory cells, and the ventral roots are efferent, comprising the axons of spinal motor and PREGANGLIONIC AUTONOMIC FIBERS. Dorsal Roots,Spinal Roots,Ventral Roots,Dorsal Root,Nerve Root, Spinal,Nerve Roots, Spinal,Root, Dorsal,Root, Spinal,Root, Spinal Nerve,Root, Ventral,Roots, Dorsal,Roots, Spinal,Roots, Spinal Nerve,Roots, Ventral,Spinal Nerve Root,Spinal Root,Ventral Root

Related Publications

D S Magnuson, and M J Schramm, and J N MacLean
January 1997, Journal of neurophysiology,
D S Magnuson, and M J Schramm, and J N MacLean
April 1994, Sheng li xue bao : [Acta physiologica Sinica],
D S Magnuson, and M J Schramm, and J N MacLean
January 2002, The Journal of comparative neurology,
D S Magnuson, and M J Schramm, and J N MacLean
November 2006, Neuroscience,
D S Magnuson, and M J Schramm, and J N MacLean
June 1993, Naunyn-Schmiedeberg's archives of pharmacology,
D S Magnuson, and M J Schramm, and J N MacLean
September 2011, Experimental brain research,
D S Magnuson, and M J Schramm, and J N MacLean
November 1994, Journal of neurophysiology,
D S Magnuson, and M J Schramm, and J N MacLean
March 2010, Journal of neurophysiology,
D S Magnuson, and M J Schramm, and J N MacLean
January 2013, Brain research,
Copied contents to your clipboard!