Physostigmine, but not 3,4-diaminopyridine, improves radial maze performance in memory-impaired rats. 1995

R J Beninger, and B A Wirsching, and P E Mallet, and K Jhamandas, and R J Boegman
Department of Psychology, Queen's University, Kingston, Canada.

The results of some studies suggest that 3,4-diaminopyridine (3,4-DAP), a drug that enhances the release of acetylcholine, may improve memory. The present study examined the ability of 3,4-DAP to reverse the memory impairment produced by scopolamine and the ability of 3,4-DAP and physostigmine to reverse the memory impairment produced by quinolinic acid lesions of the nucleus basalis magnocellularis (nbm) in rats. Mnemonic functioning was assessed with the use of a partially baited eight-arm radial maze. Entries into arms that were never baited were defined as reference memory errors; entries into baited arms from which the food already had been eaten were defined as working memory errors. In Experiment 1, 0.1 mg/kg scopolamine produced a significant increase in working and reference memory errors. Various doses of 3,4-DAP had no significant ameliorative effect on the mnemonic deficit. In Experiment 2, cholinergic function was impaired using a unilateral intra-nbm injection of quinolinic acid (120 nmol in 1.0 microliter). These lesions reduced the levels of the cholinergic marker, choline acetyltransferase, in the cortex by more than 40%. Results showed that the nbm lesion animals were significantly more impaired on the working than reference memory component of the task. Physostigmine (0.01, 0.05, 0.10, 0.20, 0.50 mg/kg) dose-dependently decreased the number of working but not reference memory errors. 3,4-DAP (10(-8), 10(-6), 10(-4), 10(-2), 10(0) mg/kg) had no reliable effect. It was concluded that physostigmine, but not 3,4-DAP, ameliorates memory impairments following decreases in cholinergic function.

UI MeSH Term Description Entries
D008297 Male Males
D008569 Memory Disorders Disturbances in registering an impression, in the retention of an acquired impression, or in the recall of an impression. Memory impairments are associated with DEMENTIA; CRANIOCEREBRAL TRAUMA; ENCEPHALITIS; ALCOHOLISM (see also ALCOHOL AMNESTIC DISORDER); SCHIZOPHRENIA; and other conditions. Memory Loss,Age-Related Memory Disorders,Memory Deficits,Memory Disorder, Semantic,Memory Disorder, Spatial,Memory Disorders, Age-Related,Retention Disorders, Cognitive,Semantic Memory Disorder,Spatial Memory Disorder,Age Related Memory Disorders,Age-Related Memory Disorder,Cognitive Retention Disorder,Cognitive Retention Disorders,Deficit, Memory,Deficits, Memory,Memory Deficit,Memory Disorder,Memory Disorder, Age-Related,Memory Disorders, Age Related,Memory Disorders, Semantic,Memory Disorders, Spatial,Memory Losses,Retention Disorder, Cognitive,Semantic Memory Disorders,Spatial Memory Disorders
D008570 Memory, Short-Term Remembrance of information for a few seconds to hours. Immediate Recall,Memory, Immediate,Working Memory,Memory, Shortterm,Immediate Memories,Immediate Memory,Immediate Recalls,Memories, Immediate,Memories, Short-Term,Memories, Shortterm,Memory, Short Term,Recall, Immediate,Recalls, Immediate,Short-Term Memories,Short-Term Memory,Shortterm Memories,Shortterm Memory,Working Memories
D010830 Physostigmine A cholinesterase inhibitor that is rapidly absorbed through membranes. It can be applied topically to the conjunctiva. It also can cross the blood-brain barrier and is used when central nervous system effects are desired, as in the treatment of severe anticholinergic toxicity. Eserine
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D002795 Choline O-Acetyltransferase An enzyme that catalyzes the formation of acetylcholine from acetyl-CoA and choline. EC 2.3.1.6. Choline Acetylase,Choline Acetyltransferase,Acetylase, Choline,Acetyltransferase, Choline,Choline O Acetyltransferase,O-Acetyltransferase, Choline
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D000077770 Amifampridine 4-Aminopyridine derivative that acts as a POTASSIUM CHANNEL blocker to increase release of ACETYLCHOLINE from nerve terminals. It is used in the treatment of CONGENITAL MYASTHENIC SYNDROMES. Ruzurgi,3,4-Diaminopyridine,Amifampridine Phosphate,Firdapse,3,4 Diaminopyridine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012601 Scopolamine An alkaloid from SOLANACEAE, especially DATURA and SCOPOLIA. Scopolamine and its quaternary derivatives act as antimuscarinics like ATROPINE, but may have more central nervous system effects. Its many uses include an anesthetic premedication, the treatment of URINARY INCONTINENCE and MOTION SICKNESS, an antispasmodic, and a mydriatic and cycloplegic. Hyoscine,Scopolamine Hydrobromide,Boro-Scopol,Isopto Hyoscine,Kwells,Scoburen,Scopace,Scopoderm TTS,Scopolamine Cooper,Transderm Scop,Transderm-V,Travacalm HO,Vorigeno,Boro Scopol,Transderm V

Related Publications

R J Beninger, and B A Wirsching, and P E Mallet, and K Jhamandas, and R J Boegman
January 1992, Neuroreport,
R J Beninger, and B A Wirsching, and P E Mallet, and K Jhamandas, and R J Boegman
January 2010, Zhurnal vysshei nervnoi deiatelnosti imeni I P Pavlova,
R J Beninger, and B A Wirsching, and P E Mallet, and K Jhamandas, and R J Boegman
January 1983, Experimental aging research,
R J Beninger, and B A Wirsching, and P E Mallet, and K Jhamandas, and R J Boegman
August 1981, Physiology & behavior,
R J Beninger, and B A Wirsching, and P E Mallet, and K Jhamandas, and R J Boegman
January 1988, Psychopharmacology,
R J Beninger, and B A Wirsching, and P E Mallet, and K Jhamandas, and R J Boegman
December 1998, Brain research,
R J Beninger, and B A Wirsching, and P E Mallet, and K Jhamandas, and R J Boegman
October 1993, Behavioural pharmacology,
R J Beninger, and B A Wirsching, and P E Mallet, and K Jhamandas, and R J Boegman
October 2000, Pharmacological research,
R J Beninger, and B A Wirsching, and P E Mallet, and K Jhamandas, and R J Boegman
November 2005, Brain research,
R J Beninger, and B A Wirsching, and P E Mallet, and K Jhamandas, and R J Boegman
August 2005, Behavioral neuroscience,
Copied contents to your clipboard!