The action of 4-hydroxyaminobiphenyl in Escherichia coli: cytotoxic and mutagenic effects in DNA repair deficient strains. 1993

M Suzuki, and K Takahashi, and T Morita, and M Kojima, and M Tada
Faculty of Pharmaceutical Sciences, Nagoya City University, Japan.

The cytotoxic and mutagenic effects of 4-hydroxyaminobiphenyl (N-OH-ABP) were studied using Escherichia coli strains with different repair capacities. N-OH-ABP was equally cytotoxic for uvrA and recA mutants as well as in wild-type cells while polA mutant strains proved particularly sensitive to its toxicity. In contrast, the mutation frequency in the uvrA strains tested was elevated to 30-400-fold the wild-type values. We suggest that aminobiphenyl-DNA adducts responsible for mutation are repaired by UVR endonuclease but different pathways exist for removal of DNA lesions responsible for bacterial killing. From the 32P-postlabeling analysis, it was concluded that ABP-DNA adducts can be relatively rapidly repaired in wild-type strains, while persisting in the uvrA strains.

UI MeSH Term Description Entries
D009153 Mutagens Chemical agents that increase the rate of genetic mutation by interfering with the function of nucleic acids. A clastogen is a specific mutagen that causes breaks in chromosomes. Clastogen,Clastogens,Genotoxin,Genotoxins,Mutagen
D010761 Phosphorus Radioisotopes Unstable isotopes of phosphorus that decay or disintegrate emitting radiation. P atoms with atomic weights 28-34 except 31 are radioactive phosphorus isotopes. Radioisotopes, Phosphorus
D002273 Carcinogens Substances that increase the risk of NEOPLASMS in humans or animals. Both genotoxic chemicals, which affect DNA directly, and nongenotoxic chemicals, which induce neoplasms by other mechanism, are included. Carcinogen,Oncogen,Oncogens,Tumor Initiator,Tumor Initiators,Tumor Promoter,Tumor Promoters,Initiator, Tumor,Initiators, Tumor,Promoter, Tumor,Promoters, Tumor
D004249 DNA Damage Injuries to DNA that introduce deviations from its normal, intact structure and which may, if left unrepaired, result in a MUTATION or a block of DNA REPLICATION. These deviations may be caused by physical or chemical agents and occur by natural or unnatural, introduced circumstances. They include the introduction of illegitimate bases during replication or by deamination or other modification of bases; the loss of a base from the DNA backbone leaving an abasic site; single-strand breaks; double strand breaks; and intrastrand (PYRIMIDINE DIMERS) or interstrand crosslinking. Damage can often be repaired (DNA REPAIR). If the damage is extensive, it can induce APOPTOSIS. DNA Injury,DNA Lesion,DNA Lesions,Genotoxic Stress,Stress, Genotoxic,Injury, DNA,DNA Injuries
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D004720 Endonucleases Enzymes that catalyze the hydrolysis of the internal bonds and thereby the formation of polynucleotides or oligonucleotides from ribo- or deoxyribonucleotide chains. EC 3.1.-. Endonuclease
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005449 Fluorenes A family of diphenylenemethane derivatives.
D000611 Aminobiphenyl Compounds Biphenyl compounds substituted in any position by one or more amino groups. Permitted are any substituents except fused rings. Biphenylamines,Compounds, Aminobiphenyl
D013014 SOS Response, Genetics An error-prone mechanism or set of functions for repairing damaged microbial DNA. SOS functions (a concept reputedly derived from the SOS of the international distress signal) are involved in DNA repair and mutagenesis, in cell division inhibition, in recovery of normal physiological conditions after DNA repair, and possibly in cell death when DNA damage is extensive. SOS Response (Genetics),SOS Box,SOS Function,SOS Induction,SOS Region,SOS Repair,SOS Response,SOS System,Box, SOS,Function, SOS,Functions, SOS,Genetics SOS Response,Genetics SOS Responses,Induction, SOS,Inductions, SOS,Region, SOS,Regions, SOS,Repair, SOS,Repairs, SOS,Response, Genetics SOS,Response, SOS,Response, SOS (Genetics),Responses, Genetics SOS,Responses, SOS,Responses, SOS (Genetics),SOS Functions,SOS Inductions,SOS Regions,SOS Repairs,SOS Responses,SOS Responses (Genetics),SOS Responses, Genetics,SOS Systems,System, SOS,Systems, SOS

Related Publications

M Suzuki, and K Takahashi, and T Morita, and M Kojima, and M Tada
September 1986, Mutation research,
M Suzuki, and K Takahashi, and T Morita, and M Kojima, and M Tada
September 1993, Canadian journal of microbiology,
M Suzuki, and K Takahashi, and T Morita, and M Kojima, and M Tada
January 1986, Mutation research,
M Suzuki, and K Takahashi, and T Morita, and M Kojima, and M Tada
March 1974, Mutation research,
M Suzuki, and K Takahashi, and T Morita, and M Kojima, and M Tada
October 1979, Gan,
M Suzuki, and K Takahashi, and T Morita, and M Kojima, and M Tada
January 1975, Basic life sciences,
M Suzuki, and K Takahashi, and T Morita, and M Kojima, and M Tada
November 1978, Mutation research,
M Suzuki, and K Takahashi, and T Morita, and M Kojima, and M Tada
April 1982, Mutation research,
M Suzuki, and K Takahashi, and T Morita, and M Kojima, and M Tada
March 2010, Mutagenesis,
Copied contents to your clipboard!