Syn-capping of human T lymphocyte adhesion/activation molecules and their redistribution during interaction with endothelial cells. 1993

S J Rosenman, and A A Ganji, and T F Tedder, and W M Gallatin
ICOS Corporation, Bothell, Washington 98021.

Lymphocyte-endothelial cell interactions are mediated in part by multiple lymphocyte surface adhesion/activation molecules and their cognate ligands. We investigated the surface localization of several of these molecules implicated in T cell adhesion and transendothelial migration mechanisms to determine if spatial regulation of their distribution contributes to these processes. T lymphocyte suspensions were stained to define distribution, ability to be aggregated into energy-dependent caps, and potential cocapping of several adhesion structures. CD2, CD44, L-selectin (LAM-1, LECCAM-1), and CD11a/CD18 (LFA-1) exhibited uniform distribution on the T cell surface by direct immunofluorescence but formed caps in an energy-dependent, and therefore cytoskeletally driven, manner when examined by indirect immunofluorescence. CD2 was shown to syn-cap (unidirectionally cocap) with CD44 and CD11a/CD18 (LFA-1), an observation potentially related to functional cooperation among these molecules in T cell activation. T cells were also added to endothelial cell monolayers to assess, in a physiologically relevant context, potential surface molecule reorganization. Lymphocytes co-cultured with human umbilical vein endothelial cells (HUVEC) underwent a profound shape change, from essentially round cells to polarized cells bearing pseudopodia. Immunofluorescent localization of T cell adhesion/activation molecules using confocal microscopy revealed the redistribution of CD2, CD44, and L-selectin to the pseudopod. In contrast, CD11a/CD18 remained globally distributed on the cell surface, even in severely deformed cells. Both lymphocyte shape change and membrane molecule redistribution appear to be cell-cell contact-dependent phenomena requiring intact, viable endothelial cells. Mechanisms that control these events may be critical to lymphocyte recirculation and inflammation.

UI MeSH Term Description Entries
D008213 Lymphocyte Activation Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION. Blast Transformation,Blastogenesis,Lymphoblast Transformation,Lymphocyte Stimulation,Lymphocyte Transformation,Transformation, Blast,Transformation, Lymphoblast,Transformation, Lymphocyte,Activation, Lymphocyte,Stimulation, Lymphocyte
D011971 Receptors, Immunologic Cell surface molecules on cells of the immune system that specifically bind surface molecules or messenger molecules and trigger changes in the behavior of cells. Although these receptors were first identified in the immune system, many have important functions elsewhere. Immunologic Receptors,Immunologic Receptor,Immunological Receptors,Receptor, Immunologic,Receptors, Immunological
D002448 Cell Adhesion Adherence of cells to surfaces or to other cells. Adhesion, Cell,Adhesions, Cell,Cell Adhesions
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004730 Endothelium, Vascular Single pavement layer of cells which line the luminal surface of the entire vascular system and regulate the transport of macromolecules and blood components. Capillary Endothelium,Vascular Endothelium,Capillary Endotheliums,Endothelium, Capillary,Endotheliums, Capillary,Endotheliums, Vascular,Vascular Endotheliums
D005455 Fluorescent Antibody Technique Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy. Antinuclear Antibody Test, Fluorescent,Coon's Technique,Fluorescent Antinuclear Antibody Test,Fluorescent Protein Tracing,Immunofluorescence Technique,Coon's Technic,Fluorescent Antibody Technic,Immunofluorescence,Immunofluorescence Technic,Antibody Technic, Fluorescent,Antibody Technics, Fluorescent,Antibody Technique, Fluorescent,Antibody Techniques, Fluorescent,Coon Technic,Coon Technique,Coons Technic,Coons Technique,Fluorescent Antibody Technics,Fluorescent Antibody Techniques,Fluorescent Protein Tracings,Immunofluorescence Technics,Immunofluorescence Techniques,Protein Tracing, Fluorescent,Protein Tracings, Fluorescent,Technic, Coon's,Technic, Fluorescent Antibody,Technic, Immunofluorescence,Technics, Fluorescent Antibody,Technics, Immunofluorescence,Technique, Coon's,Technique, Fluorescent Antibody,Technique, Immunofluorescence,Techniques, Fluorescent Antibody,Techniques, Immunofluorescence,Tracing, Fluorescent Protein,Tracings, Fluorescent Protein
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000911 Antibodies, Monoclonal Antibodies produced by a single clone of cells. Monoclonal Antibodies,Monoclonal Antibody,Antibody, Monoclonal
D000945 Antigens, Differentiation, T-Lymphocyte Antigens expressed on the cell membrane of T-lymphocytes during differentiation, activation, and normal and neoplastic transformation. Their phenotypic characterization is important in differential diagnosis and studies of thymic ontogeny and T-cell function. Antigens, Differentiation, T-Cell,Differentiation Antigens, T-Cell,L3T4 Antigens,Leu Antigens, T-Lymphocyte,T-Cell Differentiation Antigens,T-Lymphocyte Differentiation Antigens,T6 Antigens,Antigens, Differentiation, T Lymphocyte,Differentiation Antigens, T Lymphocyte,Antigens, L3T4,Antigens, T-Cell Differentiation,Antigens, T-Lymphocyte Differentiation,Antigens, T-Lymphocyte Leu,Antigens, T6,Differentiation Antigens, T Cell,Differentiation Antigens, T-Lymphocyte,Leu Antigens, T Lymphocyte,T Cell Differentiation Antigens,T Lymphocyte Differentiation Antigens,T-Lymphocyte Leu Antigens

Related Publications

S J Rosenman, and A A Ganji, and T F Tedder, and W M Gallatin
July 1982, Nature,
S J Rosenman, and A A Ganji, and T F Tedder, and W M Gallatin
May 1981, The Journal of clinical investigation,
S J Rosenman, and A A Ganji, and T F Tedder, and W M Gallatin
January 1998, Critical reviews in immunology,
S J Rosenman, and A A Ganji, and T F Tedder, and W M Gallatin
August 1992, American journal of respiratory cell and molecular biology,
S J Rosenman, and A A Ganji, and T F Tedder, and W M Gallatin
April 2002, Yonsei medical journal,
S J Rosenman, and A A Ganji, and T F Tedder, and W M Gallatin
January 1989, The Year in immunology,
S J Rosenman, and A A Ganji, and T F Tedder, and W M Gallatin
February 1991, Kidney international,
S J Rosenman, and A A Ganji, and T F Tedder, and W M Gallatin
August 1996, Cardiovascular research,
S J Rosenman, and A A Ganji, and T F Tedder, and W M Gallatin
October 2002, Haematologica,
Copied contents to your clipboard!