Mechanism of HIV-1 reverse transcriptase. Termination of processive synthesis on a natural DNA template is influenced by the sequence of the template-primer stem. 1993

J Abbotts, and K Bebenek, and T A Kunkel, and S H Wilson
Laboratory of Biochemistry, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892.

During processive DNA synthesis in vitro, the human immunoefficiency virus, type 1 (HIV-1) reverse transcriptase encounters template nucleotide positions at which continued synthesis is difficult. At these positions, the enzyme has a relatively high probability of dissociating from the template, and product molecules of corresponding length accumulate as the incubation proceeds. These positions, which are known as termination sites, could be associated with template secondary structures in some cases, but many termination sites appear to be template sequence-related rather than secondary structure-related. Mechanisms producing these blocks in processive DNA synthesis are not well understood. In this study, to examine further the effects of template sequence on termination, we engineered selected single-base changes in the M13mp2 template, and we found that such changes can influence termination. Several general trends emerged from the study. First, strong termination sites rarely correspond to dATP as the "incoming" substrate opposite template T. Second, the sequence of the template-primer stem is more important for termination than the sequence of the single-stranded template ahead of the primer. Thus, we note the phenomenon of action at a distance: changing sequence at one nucleotide position in the template-primer stem alters termination at other positions, a few nucleotides distant at the primer 3' end. A and C as template bases in the template-primer stem have opposite effects. A is the strongest terminator residue, and C is the weakest terminator residue, followed by G. Since termination sites are produced by reverse transcriptase dissociation from the template-primer, the results suggest that the HIV-1 reverse transcriptase has properties reminiscent of a sequence-specific double-stranded DNA-binding protein in that its binding mechanism can distinguish both base residues and positions in the double-stranded DNA template-primer stem.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011336 Probability The study of chance processes or the relative frequency characterizing a chance process. Probabilities
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004261 DNA Replication The process by which a DNA molecule is duplicated. Autonomous Replication,Replication, Autonomous,Autonomous Replications,DNA Replications,Replication, DNA,Replications, Autonomous,Replications, DNA
D004279 DNA, Viral Deoxyribonucleic acid that makes up the genetic material of viruses. Viral DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012194 RNA-Directed DNA Polymerase An enzyme that synthesizes DNA on an RNA template. It is encoded by the pol gene of retroviruses and by certain retrovirus-like elements. EC 2.7.7.49. DNA Polymerase, RNA-Directed,RNA-Dependent DNA Polymerase,Reverse Transcriptase,RNA Transcriptase,Revertase,DNA Polymerase, RNA Directed,DNA Polymerase, RNA-Dependent,RNA Dependent DNA Polymerase,RNA Directed DNA Polymerase
D013698 Templates, Genetic Macromolecular molds for the synthesis of complementary macromolecules, as in DNA REPLICATION; GENETIC TRANSCRIPTION of DNA to RNA, and GENETIC TRANSLATION of RNA into POLYPEPTIDES. Genetic Template,Genetic Templates,Template, Genetic

Related Publications

J Abbotts, and K Bebenek, and T A Kunkel, and S H Wilson
February 2012, Journal of molecular biology,
J Abbotts, and K Bebenek, and T A Kunkel, and S H Wilson
April 2005, Biochemistry,
J Abbotts, and K Bebenek, and T A Kunkel, and S H Wilson
January 1999, Journal of molecular biology,
J Abbotts, and K Bebenek, and T A Kunkel, and S H Wilson
October 1997, Proceedings of the National Academy of Sciences of the United States of America,
J Abbotts, and K Bebenek, and T A Kunkel, and S H Wilson
August 2001, The Journal of biological chemistry,
J Abbotts, and K Bebenek, and T A Kunkel, and S H Wilson
January 1994, Journal of enzyme inhibition,
J Abbotts, and K Bebenek, and T A Kunkel, and S H Wilson
January 2018, The Journal of biological chemistry,
J Abbotts, and K Bebenek, and T A Kunkel, and S H Wilson
October 2004, The Journal of biological chemistry,
J Abbotts, and K Bebenek, and T A Kunkel, and S H Wilson
August 2001, The Journal of biological chemistry,
Copied contents to your clipboard!