Arsenite enhances DNA double-strand breaks and cell killing of methyl methanesulfonate-treated cells by inhibiting the excision of alkali-labile sites. 1993

S F Lee-Chen, and J R Gurr, and I B Lin, and K Y Jan
Institute of Zoology, Academia Sinica, Taipei, Taiwan, ROC.

Analysis of DNA strand breaks by alkaline elution indicates that DNA repair of Chinese hamster ovary cells treated with methyl methanesulfonate (MMS) was inhibited by sodium arsenite. Comparing the profiles of a 36-min elution with buffer pH 12.1 and a 12-h elution with buffer pH 12.4 revealed that alkali-labile sites were increased more than frank breaks in the combined treatment with MMS plus arsenite. Enhancement of alkali-labile sites was detected with low doses of MMS and arsenite, whereas enhancement of frank breaks required higher doses of MMS and arsenite. Double-strand breaks were detected after incubating the MMS-treated cells in an arsenite-containing medium for 18 or 12 h but not less than 6 h. No double-strand breaks were detected when MMS-damaged cells were posttreated with arsenite for 3 h; however, double-strand breaks were detected after further incubating these cells in arsenite-free medium for 18 h. Thus, inhibition of arsenite on the excision of methylated bases may have accumulated a large number of alkali-labile sites in the parental strands, and DNA replication may then generate breaks in the non-methylated daughter strands. Double-strand breaks may result from overlapping gaps between the parental and daughter strands and/or postreplication repair. These double-strand breaks may then result in the synergistic cell death as observed with posttreatment of MMS-damaged cells with arsenite for 1 or 3 h.

UI MeSH Term Description Entries
D008741 Methyl Methanesulfonate An alkylating agent in cancer therapy that may also act as a mutagen by interfering with and causing damage to DNA. Methylmethane Sulfonate,Dimethylsulfonate,Mesilate, Methyl,Methyl Mesylate,Methyl Methylenesulfonate,Methylmesilate,Mesylate, Methyl,Methanesulfonate, Methyl,Methyl Mesilate
D008745 Methylation Addition of methyl groups. In histo-chemistry methylation is used to esterify carboxyl groups and remove sulfate groups by treating tissue sections with hot methanol in the presence of hydrochloric acid. (From Stedman, 25th ed) Methylations
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004249 DNA Damage Injuries to DNA that introduce deviations from its normal, intact structure and which may, if left unrepaired, result in a MUTATION or a block of DNA REPLICATION. These deviations may be caused by physical or chemical agents and occur by natural or unnatural, introduced circumstances. They include the introduction of illegitimate bases during replication or by deamination or other modification of bases; the loss of a base from the DNA backbone leaving an abasic site; single-strand breaks; double strand breaks; and intrastrand (PYRIMIDINE DIMERS) or interstrand crosslinking. Damage can often be repaired (DNA REPAIR). If the damage is extensive, it can induce APOPTOSIS. DNA Injury,DNA Lesion,DNA Lesions,Genotoxic Stress,Stress, Genotoxic,Injury, DNA,DNA Injuries
D004260 DNA Repair The removal of DNA LESIONS and/or restoration of intact DNA strands without BASE PAIR MISMATCHES, intrastrand or interstrand crosslinks, or discontinuities in the DNA sugar-phosphate backbones. DNA Damage Response
D004261 DNA Replication The process by which a DNA molecule is duplicated. Autonomous Replication,Replication, Autonomous,Autonomous Replications,DNA Replications,Replication, DNA,Replications, Autonomous,Replications, DNA
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D004357 Drug Synergism The action of a drug in promoting or enhancing the effectiveness of another drug. Drug Potentiation,Drug Augmentation,Augmentation, Drug,Augmentations, Drug,Drug Augmentations,Drug Potentiations,Drug Synergisms,Potentiation, Drug,Potentiations, Drug,Synergism, Drug,Synergisms, Drug
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster
D000477 Alkylating Agents Highly reactive chemicals that introduce alkyl radicals into biologically active molecules and thereby prevent their proper functioning. Many are used as antineoplastic agents, but most are very toxic, with carcinogenic, mutagenic, teratogenic, and immunosuppressant actions. They have also been used as components in poison gases. Alkylating Agent,Alkylator,Alkylators,Agent, Alkylating,Agents, Alkylating

Related Publications

S F Lee-Chen, and J R Gurr, and I B Lin, and K Y Jan
October 1977, Nucleic acids research,
S F Lee-Chen, and J R Gurr, and I B Lin, and K Y Jan
January 2005, Nucleic acids research,
S F Lee-Chen, and J R Gurr, and I B Lin, and K Y Jan
January 1976, Journal of medicine,
S F Lee-Chen, and J R Gurr, and I B Lin, and K Y Jan
January 1998, Advances in space research : the official journal of the Committee on Space Research (COSPAR),
S F Lee-Chen, and J R Gurr, and I B Lin, and K Y Jan
June 2000, Radiation research,
S F Lee-Chen, and J R Gurr, and I B Lin, and K Y Jan
March 2003, DNA repair,
S F Lee-Chen, and J R Gurr, and I B Lin, and K Y Jan
November 1998, Radiation research,
S F Lee-Chen, and J R Gurr, and I B Lin, and K Y Jan
May 1989, Photochemistry and photobiology,
S F Lee-Chen, and J R Gurr, and I B Lin, and K Y Jan
December 2000, Radiation research,
Copied contents to your clipboard!