Glutamate receptor agonists enhance the expression of BDNF mRNA in cultured cerebellar granule cells. 1993

Y Bessho, and S Nakanishi, and H Nawa
Institute for Immunology, Kyoto University, Faculty of Medicine, Japan.

The influence of glutamate and its analogues on the expression of BDNF mRNA was studied in cultured cerebellar granule cells. Four-hour exposure of the neurons to the glutamate receptor agonists, quisqualate, kainate, alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) and N-methyl-D-aspartate (NMDA), increased levels of BDNF mRNA. Glutamate in combination with antagonists of the ionotropic glutamate receptors, 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), D-2-amino-5-phosphonovalerate (AP-5) and/or (+)-5-methyl-10,11-dihydro-5H-dibenzocyclohepten-5,10-imine hydrogen maleate (MK-801), also increased levels of BDNF mRNA. However, the addition of glutamate itself to the cultures produced severe neuronal death and failed to increase the mRNA level. The onset of the increase in BDNF mRNA by kainate and NMDA lagged behind that by quisqualate. These results indicate that the non-ionotropic glutamate receptor might be involved in the induction of BDNF mRNA. Quisqualate is known to be a potent agonist of both the AMPA/kainate receptor and the metabotropic glutamate receptor. The specific antagonists of the AMPA/kainate receptor, CNQX and 6,7-dinitroquinoxaline-2,3-dione (DNQX) failed to block the increase of BDNF mRNA by quisqualate. Moreover, the desensitization of the metabotropic glutamate receptor by phorbol ester abolished the increase of BDNF mRNA by quisqualate. These results suggest that stimulation of the metabotropic glutamate receptor may be the most predominant component to increase BDNF mRNA in cerebellar granule cell culture.

UI MeSH Term Description Entries
D007051 Ibotenic Acid A neurotoxic isoxazole (similar to KAINIC ACID and MUSCIMOL) found in AMANITA mushrooms. It causes motor depression, ataxia, and changes in mood, perceptions and feelings, and is a potent excitatory amino acid agonist. Acid, Ibotenic
D007608 Kainic Acid (2S-(2 alpha,3 beta,4 beta))-2-Carboxy-4-(1-methylethenyl)-3-pyrrolidineacetic acid. Ascaricide obtained from the red alga Digenea simplex. It is a potent excitatory amino acid agonist at some types of excitatory amino acid receptors and has been used to discriminate among receptor types. Like many excitatory amino acid agonists it can cause neurotoxicity and has been used experimentally for that purpose. Digenic Acid,Kainate,Acid, Digenic,Acid, Kainic
D007700 Kinetics The rate dynamics in chemical or physical systems.
D007736 Kynurenic Acid A broad-spectrum excitatory amino acid antagonist used as a research tool. Kynurenate,Acid, Kynurenic
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D009414 Nerve Growth Factors Factors which enhance the growth potentialities of sensory and sympathetic nerve cells. Neurite Outgrowth Factor,Neurite Outgrowth Factors,Neuronal Growth-Associated Protein,Neuronotrophic Factor,Neurotrophic Factor,Neurotrophic Factors,Neurotrophin,Neurotrophins,Growth-Associated Proteins, Neuronal,Neuronal Growth-Associated Proteins,Neuronotrophic Factors,Neurotrophic Protein,Neurotrophic Proteins,Proteins, Neuronal Growth-Associated,Factor, Neurite Outgrowth,Factor, Neuronotrophic,Factor, Neurotrophic,Factors, Nerve Growth,Factors, Neurite Outgrowth,Factors, Neuronotrophic,Factors, Neurotrophic,Growth Associated Proteins, Neuronal,Growth-Associated Protein, Neuronal,Neuronal Growth Associated Protein,Neuronal Growth Associated Proteins,Outgrowth Factor, Neurite,Outgrowth Factors, Neurite,Protein, Neuronal Growth-Associated
D009419 Nerve Tissue Proteins Proteins, Nerve Tissue,Tissue Proteins, Nerve
D011810 Quinoxalines Quinoxaline
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell

Related Publications

Y Bessho, and S Nakanishi, and H Nawa
September 1993, Neuroreport,
Y Bessho, and S Nakanishi, and H Nawa
February 1998, Brain research. Developmental brain research,
Y Bessho, and S Nakanishi, and H Nawa
January 1996, Neuroreport,
Y Bessho, and S Nakanishi, and H Nawa
September 1993, Biochemical and biophysical research communications,
Y Bessho, and S Nakanishi, and H Nawa
February 1998, Brain research,
Y Bessho, and S Nakanishi, and H Nawa
January 1992, Journal of neurochemistry,
Y Bessho, and S Nakanishi, and H Nawa
April 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Y Bessho, and S Nakanishi, and H Nawa
July 1987, The Journal of pharmacology and experimental therapeutics,
Copied contents to your clipboard!