Modulation of GAP-43 mRNA by GABA and glutamate in cultured cerebellar granule cells. 1998

L M Console-Bram, and D H Baird, and S G Fitzpatrick-McElligott, and J G McElligott
Temple University School of Medicine, Department of Pharmacology, 3420 N. Broad Street, Philadelphia, PA 19140, USA.

Expression of GAP-43 in the cerebellum and selected regions of the brain has been shown to be developmentally regulated. Localization of GAP-43 mRNA within granule cells of the immature and mature rat cerebellum has been demonstrated by in situ hybridization. Higher levels are detected in the neonate compared to the adult. To determine if the cerebellar neurotransmitters, GABA (gamma-amino-butyric acid) and glutamate are involved in the modulation of GAP-43 expression, cultured cerebellar granule cells were exposed to these transmitters. Cultures were treated with glutamate, GABA, or the agonists/antagonists to their receptors in serum-free media for 5-7 days. Analysis of the levels of GAP-43 mRNA by in situ hybridization indicated that a 7-day exposure to GABA (25 and 50 microM) significantly lowered levels of granule cell GAP-43 mRNA. Specific agonists to the GABAA (muscimol) and GABAB (baclofen) receptors produced a decrease similar to that observed for GABA. Results from these studies also indicated that exposure to non-NMDA (CNQX) and NMDA (CPP, MK-801) glutamate receptor antagonists, and a metabotropic receptor glutamate agonist (ACPD), decreased the level of GAP-43 mRNA. The involvement of GABA and glutamate in the modulation of GAP-43 expression was corroborated by Northern hybridization. These studies revealed that a 5-day exposure to GABA decreased the cellular content of GAP-43 mRNA by 21% whereas exposure to glutamate resulted in a 37% increase. Findings from the studies reported here, using an in vitro cerebellar granule cell model, suggest that levels of GAP-43 mRNA, in vivo, are modulated by input from both excitatory glutamatergic mossy fibers and inhibitory GABAergic Golgi interneurons. Thus, modulation of GAP-43 mRNA by these neurotransmitters may influence granule cell maturation during development in the neonate and neuroplasticity in the adult, possibly at the parallel fiber-Purkinje cell synapse.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008869 Microtubule-Associated Proteins High molecular weight proteins found in the MICROTUBULES of the cytoskeletal system. Under certain conditions they are required for TUBULIN assembly into the microtubules and stabilize the assembled microtubules. Ensconsin,Epithelial MAP, 115 kDa,Epithelial Microtubule-Associate Protein, 115 kDa,MAP4,Microtubule Associated Protein,Microtubule Associated Protein 4,Microtubule Associated Protein 7,Microtubule-Associated Protein,Microtubule-Associated Protein 7,E-MAP-115,MAP1 Microtubule-Associated Protein,MAP2 Microtubule-Associated Protein,MAP3 Microtubule-Associated Protein,Microtubule Associated Proteins,Microtubule-Associated Protein 1,Microtubule-Associated Protein 2,Microtubule-Associated Protein 3,7, Microtubule-Associated Protein,Associated Protein, Microtubule,E MAP 115,Epithelial Microtubule Associate Protein, 115 kDa,MAP1 Microtubule Associated Protein,MAP2 Microtubule Associated Protein,MAP3 Microtubule Associated Protein,Microtubule Associated Protein 1,Microtubule Associated Protein 2,Microtubule Associated Protein 3,Microtubule-Associated Protein, MAP1,Microtubule-Associated Protein, MAP2,Microtubule-Associated Protein, MAP3,Protein 7, Microtubule-Associated,Protein, Microtubule Associated,Protein, Microtubule-Associated
D009118 Muscimol A neurotoxic isoxazole isolated from species of AMANITA. It is obtained by decarboxylation of IBOTENIC ACID. Muscimol is a potent agonist of GABA-A RECEPTORS and is used mainly as an experimental tool in animal and tissue studies. Agarin,Pantherine
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010879 Piperazines Compounds that are derived from PIPERAZINE.
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002531 Cerebellum The part of brain that lies behind the BRAIN STEM in the posterior base of skull (CRANIAL FOSSA, POSTERIOR). It is also known as the "little brain" with convolutions similar to those of CEREBRAL CORTEX, inner white matter, and deep cerebellar nuclei. Its function is to coordinate voluntary movements, maintain balance, and learn motor skills. Cerebella,Corpus Cerebelli,Parencephalon,Cerebellums,Parencephalons
D003515 Cycloleucine An amino acid formed by cyclization of leucine. It has cytostatic, immunosuppressive and antineoplastic activities. 1-Aminocyclopentanecarboxylic Acid,Aminocyclopentanecarboxylic Acid,NSC 1026,1 Aminocyclopentanecarboxylic Acid,Acid, 1-Aminocyclopentanecarboxylic,Acid, Aminocyclopentanecarboxylic
D005680 gamma-Aminobutyric Acid The most common inhibitory neurotransmitter in the central nervous system. 4-Aminobutyric Acid,GABA,4-Aminobutanoic Acid,Aminalon,Aminalone,Gammalon,Lithium GABA,gamma-Aminobutyric Acid, Calcium Salt (2:1),gamma-Aminobutyric Acid, Hydrochloride,gamma-Aminobutyric Acid, Monolithium Salt,gamma-Aminobutyric Acid, Monosodium Salt,gamma-Aminobutyric Acid, Zinc Salt (2:1),4 Aminobutanoic Acid,4 Aminobutyric Acid,Acid, Hydrochloride gamma-Aminobutyric,GABA, Lithium,Hydrochloride gamma-Aminobutyric Acid,gamma Aminobutyric Acid,gamma Aminobutyric Acid, Hydrochloride,gamma Aminobutyric Acid, Monolithium Salt,gamma Aminobutyric Acid, Monosodium Salt
D005904 Glial Fibrillary Acidic Protein An intermediate filament protein found only in glial cells or cells of glial origin. MW 51,000. Glial Intermediate Filament Protein,Astroprotein,GFA-Protein,Glial Fibrillary Acid Protein,GFA Protein

Related Publications

L M Console-Bram, and D H Baird, and S G Fitzpatrick-McElligott, and J G McElligott
March 2000, Neuroreport,
L M Console-Bram, and D H Baird, and S G Fitzpatrick-McElligott, and J G McElligott
June 2006, Journal of neuroscience research,
L M Console-Bram, and D H Baird, and S G Fitzpatrick-McElligott, and J G McElligott
May 1995, Journal of neurochemistry,
L M Console-Bram, and D H Baird, and S G Fitzpatrick-McElligott, and J G McElligott
January 1993, Journal of neurochemistry,
L M Console-Bram, and D H Baird, and S G Fitzpatrick-McElligott, and J G McElligott
May 1993, Brain research. Molecular brain research,
L M Console-Bram, and D H Baird, and S G Fitzpatrick-McElligott, and J G McElligott
January 1987, Journal of neuroscience research,
L M Console-Bram, and D H Baird, and S G Fitzpatrick-McElligott, and J G McElligott
August 1995, Neuropharmacology,
L M Console-Bram, and D H Baird, and S G Fitzpatrick-McElligott, and J G McElligott
February 1993, Journal of neurochemistry,
L M Console-Bram, and D H Baird, and S G Fitzpatrick-McElligott, and J G McElligott
October 2000, The Journal of neuroscience : the official journal of the Society for Neuroscience,
L M Console-Bram, and D H Baird, and S G Fitzpatrick-McElligott, and J G McElligott
January 1993, The European journal of neuroscience,
Copied contents to your clipboard!