Allosteric mechanism for translational repression in the Escherichia coli alpha operon. 1993

G Spedding, and D E Draper
Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218.

The ribosomal protein S4 is a translational repressor that binds to a complex mRNA pseudoknot structure containing the ribosome binding site for the first gene of the alpha operon. Either 30S subunits or S4 protein bound to the mRNA causes Moloney murine leukemia virus reverse transcriptase to pause near the 3' terminus of the pseudoknot. There is no competition between subunits and S4 for mRNA binding. The kinetics of forming S4-30S-mRNA complexes are biphasic, and the fraction of mRNA molecules reacting more rapidly decreases as the temperature is increased from 30 degrees C to 40 degrees C. The complex cannot be detected with mRNA mutants that cannot be repressed. We have previously shown similar kinetic behavior for the formation of tRNA(fMet) initiation complexes with tRNA(fMet), 30S subunits, and mRNA, except that the fraction reacting rapidly increases when the temperature is increased over the same 30-40 degrees C range. Thus the two sets of experiments show that there are two forms of 30S-mRNA complexes that differ in their abilities to bind S4 and tRNA(fMet). The results support an allosteric model for translational repression in which S4 traps the mRNA in a conformation able to bind 30S subunits but unable to form an initiation complex with tRNA(fMet).

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D009876 Operon In bacteria, a group of metabolically related genes, with a common promoter, whose transcription into a single polycistronic MESSENGER RNA is under the control of an OPERATOR REGION. Operons
D010442 Peptide Chain Initiation, Translational A process of GENETIC TRANSLATION whereby the formation of a peptide chain is started. It includes assembly of the RIBOSOME components, the MESSENGER RNA coding for the polypeptide to be made, INITIATOR TRNA, and PEPTIDE INITIATION FACTORS; and placement of the first amino acid in the peptide chain. The details and components of this process are unique for prokaryotic protein biosynthesis and eukaryotic protein biosynthesis. Chain Initiation, Peptide, Translational,Protein Biosynthesis Initiation,Protein Chain Initiation, Translational,Protein Translation Initiation,Translation Initiation, Genetic,Translation Initiation, Protein,Translational Initiation, Protein,Translational Peptide Chain Initiation,Biosynthesis Initiation, Protein,Genetic Translation Initiation,Initiation, Genetic Translation,Initiation, Protein Biosynthesis,Initiation, Protein Translation,Initiation, Protein Translational,Protein Translational Initiation
D012097 Repressor Proteins Proteins which maintain the transcriptional quiescence of specific GENES or OPERONS. Classical repressor proteins are DNA-binding proteins that are normally bound to the OPERATOR REGION of an operon, or the ENHANCER SEQUENCES of a gene until a signal occurs that causes their release. Repressor Molecules,Transcriptional Silencing Factors,Proteins, Repressor,Silencing Factors, Transcriptional
D004252 DNA Mutational Analysis Biochemical identification of mutational changes in a nucleotide sequence. Mutational Analysis, DNA,Analysis, DNA Mutational,Analyses, DNA Mutational,DNA Mutational Analyses,Mutational Analyses, DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D000494 Allosteric Regulation The modification of the reactivity of ENZYMES by the binding of effectors to sites (ALLOSTERIC SITES) on the enzymes other than the substrate BINDING SITES. Regulation, Allosteric,Allosteric Regulations,Regulations, Allosteric
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012269 Ribosomal Proteins Proteins found in ribosomes. They are believed to have a catalytic function in reconstituting biologically active ribosomal subunits. Proteins, Ribosomal,Ribosomal Protein,Protein, Ribosomal

Related Publications

G Spedding, and D E Draper
August 1997, Proceedings of the National Academy of Sciences of the United States of America,
G Spedding, and D E Draper
July 1969, Journal of bacteriology,
G Spedding, and D E Draper
March 1969, Journal of bacteriology,
G Spedding, and D E Draper
December 1970, Proceedings of the National Academy of Sciences of the United States of America,
G Spedding, and D E Draper
February 1967, Journal of molecular biology,
G Spedding, and D E Draper
May 2009, Journal of bacteriology,
G Spedding, and D E Draper
August 1971, Proceedings of the National Academy of Sciences of the United States of America,
G Spedding, and D E Draper
June 1989, Journal of bacteriology,
Copied contents to your clipboard!