Mechanism of resistance of human immunodeficiency virus type 1 to 2',3'-dideoxyinosine. 1993

J L Martin, and J E Wilson, and R L Haynes, and P A Furman
Division of Virology, Burroughs Wellcome Company, Research Triangle Park, NC 27709.

A molecular clone containing the wild-type reverse transcriptase (RT) coding region of human immunodeficiency virus type 1 (HIV-1) was constructed, and site-directed mutagenesis was used to introduce mutations--Leu74-->Val (L74V), T215Y, and the combination L74V/T215Y--into the RT coding region. The proteins were purified by immunoaffinity chromatography. Assays were performed with mutant and wild-type RT to determine substrate and inhibitor specificity. All three mutant enzymes catalyzed the incorporation of substrate 2'-deoxynucleoside 5'-triphosphates (dNTPs) as efficiently as wild-type HIV-1 RT. Small changes were observed in the Km values for dNTPs with all three mutant enzymes, while more significant changes were noted in sensitivity to nucleoside 5'-triphosphate analogues that inhibit the enzyme activity. Results suggest that altered substrate recognition by the HIV-1 RT is involved in the mechanism of resistance.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D003854 Deoxyribonucleotides A purine or pyrimidine base bonded to a DEOXYRIBOSE containing a bond to a phosphate group. Deoxyribonucleotide
D004352 Drug Resistance, Microbial The ability of microorganisms, especially bacteria, to resist or to become tolerant to chemotherapeutic agents, antimicrobial agents, or antibiotics. This resistance may be acquired through gene mutation or foreign DNA in transmissible plasmids (R FACTORS). Antibiotic Resistance,Antibiotic Resistance, Microbial,Antimicrobial Resistance, Drug,Antimicrobial Drug Resistance,Antimicrobial Drug Resistances,Antimicrobial Resistances, Drug,Drug Antimicrobial Resistance,Drug Antimicrobial Resistances,Drug Resistances, Microbial,Resistance, Antibiotic,Resistance, Drug Antimicrobial,Resistances, Drug Antimicrobial
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012194 RNA-Directed DNA Polymerase An enzyme that synthesizes DNA on an RNA template. It is encoded by the pol gene of retroviruses and by certain retrovirus-like elements. EC 2.7.7.49. DNA Polymerase, RNA-Directed,RNA-Dependent DNA Polymerase,Reverse Transcriptase,RNA Transcriptase,Revertase,DNA Polymerase, RNA Directed,DNA Polymerase, RNA-Dependent,RNA Dependent DNA Polymerase,RNA Directed DNA Polymerase
D015497 HIV-1 The type species of LENTIVIRUS and the etiologic agent of AIDS. It is characterized by its cytopathic effect and affinity for the T4-lymphocyte. Human immunodeficiency virus 1,HIV-I,Human Immunodeficiency Virus Type 1,Immunodeficiency Virus Type 1, Human
D016049 Didanosine A dideoxynucleoside compound in which the 3'-hydroxy group on the sugar moiety has been replaced by a hydrogen. This modification prevents the formation of phosphodiester linkages which are needed for the completion of nucleic acid chains. Didanosine is a potent inhibitor of HIV replication, acting as a chain-terminator of viral DNA by binding to reverse transcriptase; ddI is then metabolized to dideoxyadenosine triphosphate, its putative active metabolite. 2',3'-Dideoxyinosine,Dideoxyinosine,ddI (Antiviral),NSC-612049,Videx,2',3' Dideoxyinosine,NSC 612049,NSC612049
D016297 Mutagenesis, Site-Directed Genetically engineered MUTAGENESIS at a specific site in the DNA molecule that introduces a base substitution, or an insertion or deletion. Mutagenesis, Oligonucleotide-Directed,Mutagenesis, Site-Specific,Oligonucleotide-Directed Mutagenesis,Site-Directed Mutagenesis,Site-Specific Mutagenesis,Mutageneses, Oligonucleotide-Directed,Mutageneses, Site-Directed,Mutageneses, Site-Specific,Mutagenesis, Oligonucleotide Directed,Mutagenesis, Site Directed,Mutagenesis, Site Specific,Oligonucleotide Directed Mutagenesis,Oligonucleotide-Directed Mutageneses,Site Directed Mutagenesis,Site Specific Mutagenesis,Site-Directed Mutageneses,Site-Specific Mutageneses

Related Publications

J L Martin, and J E Wilson, and R L Haynes, and P A Furman
January 1992, Journal of virology,
J L Martin, and J E Wilson, and R L Haynes, and P A Furman
November 1994, Proceedings of the National Academy of Sciences of the United States of America,
J L Martin, and J E Wilson, and R L Haynes, and P A Furman
January 1992, The Journal of infectious diseases,
J L Martin, and J E Wilson, and R L Haynes, and P A Furman
May 1994, Antimicrobial agents and chemotherapy,
J L Martin, and J E Wilson, and R L Haynes, and P A Furman
July 2001, Antimicrobial agents and chemotherapy,
J L Martin, and J E Wilson, and R L Haynes, and P A Furman
November 1991, The Journal of biological chemistry,
J L Martin, and J E Wilson, and R L Haynes, and P A Furman
January 1992, American journal of ophthalmology,
J L Martin, and J E Wilson, and R L Haynes, and P A Furman
May 1990, Clinical pharmacology and therapeutics,
Copied contents to your clipboard!