Some aspects of EMS-induced mutagenesis in Escherichia coli. 1993

E Grzesiuk, and C Janion
Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw.

AB2497 and its mutS and umuDC derivatives were EMS-treated at the stationary phase and specificity of mutation measured. It was found that: (i) in mutS+ cells EMS induces predominantly GC-->AT transitions (by supB or supE(oc) formation) and in mutS- cells mainly AT-->TA transversions (by supL(NG) formation); (ii) transversions of AT-->TA are umuDC-dependent and mutational specificity is biased towards AT-->GC transitions in mutS- umuDC- strains. When mutS- umuDC- cells were transfected with plasmids bearing umuD'C or umuDC genes, mutational specificity was again biased towards AT-->TA transversions; (iii) experiments with bacteria bearing umuC::lacZ or recA::lacZ fusions suggest that processing of UmuD-->UmuD' might be poorer in EMS-treated mutS- than in mutS+ cells.

UI MeSH Term Description Entries
D009152 Mutagenicity Tests Tests of chemical substances and physical agents for mutagenic potential. They include microbial, insect, mammalian cell, and whole animal tests. Genetic Toxicity Tests,Genotoxicity Tests,Mutagen Screening,Tests, Genetic Toxicity,Toxicity Tests, Genetic,Genetic Toxicity Test,Genotoxicity Test,Mutagen Screenings,Mutagenicity Test,Screening, Mutagen,Screenings, Mutagen,Test, Genotoxicity,Tests, Genotoxicity,Toxicity Test, Genetic
D009153 Mutagens Chemical agents that increase the rate of genetic mutation by interfering with the function of nucleic acids. A clastogen is a specific mutagen that causes breaks in chromosomes. Clastogen,Clastogens,Genotoxin,Genotoxins,Mutagen
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D004249 DNA Damage Injuries to DNA that introduce deviations from its normal, intact structure and which may, if left unrepaired, result in a MUTATION or a block of DNA REPLICATION. These deviations may be caused by physical or chemical agents and occur by natural or unnatural, introduced circumstances. They include the introduction of illegitimate bases during replication or by deamination or other modification of bases; the loss of a base from the DNA backbone leaving an abasic site; single-strand breaks; double strand breaks; and intrastrand (PYRIMIDINE DIMERS) or interstrand crosslinking. Damage can often be repaired (DNA REPAIR). If the damage is extensive, it can induce APOPTOSIS. DNA Injury,DNA Lesion,DNA Lesions,Genotoxic Stress,Stress, Genotoxic,Injury, DNA,DNA Injuries
D004259 DNA-Directed DNA Polymerase DNA-dependent DNA polymerases found in bacteria, animal and plant cells. During the replication process, these enzymes catalyze the addition of deoxyribonucleotide residues to the end of a DNA strand in the presence of DNA as template-primer. They also possess exonuclease activity and therefore function in DNA repair. DNA Polymerase,DNA Polymerases,DNA-Dependent DNA Polymerases,DNA Polymerase N3,DNA Dependent DNA Polymerases,DNA Directed DNA Polymerase,DNA Polymerase, DNA-Directed,DNA Polymerases, DNA-Dependent,Polymerase N3, DNA,Polymerase, DNA,Polymerase, DNA-Directed DNA,Polymerases, DNA,Polymerases, DNA-Dependent DNA
D004260 DNA Repair The removal of DNA LESIONS and/or restoration of intact DNA strands without BASE PAIR MISMATCHES, intrastrand or interstrand crosslinks, or discontinuities in the DNA sugar-phosphate backbones. DNA Damage Response
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005020 Ethyl Methanesulfonate An antineoplastic agent with alkylating properties. It also acts as a mutagen by damaging DNA and is used experimentally for that effect. Ethylmethane Sulfonate,Ethyl Mesilate,Ethyl Mesylate,Ethylmesilate,Ethylmesylate,Mesilate, Ethyl,Mesylate, Ethyl,Methanesulfonate, Ethyl,Sulfonate, Ethylmethane
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial

Related Publications

E Grzesiuk, and C Janion
March 1967, Applied microbiology,
E Grzesiuk, and C Janion
March 1984, Mutation research,
E Grzesiuk, and C Janion
October 1991, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
E Grzesiuk, and C Janion
September 1986, Antibiotiki i meditsinskaia biotekhnologiia = Antibiotics and medical biotechnology,
E Grzesiuk, and C Janion
March 1989, Molecular & general genetics : MGG,
E Grzesiuk, and C Janion
September 1974, Journal of bacteriology,
E Grzesiuk, and C Janion
August 1980, Chemico-biological interactions,
E Grzesiuk, and C Janion
February 2008, Mutation research,
Copied contents to your clipboard!