Determinants of the RNase H cleavage specificity of human immunodeficiency virus reverse transcriptase. 1993

J J DeStefano, and L M Mallaber, and P J Fay, and R A Bambara
Department of Biochemistry, University of Rochester, NY 14642.

We examined the ribonuclease H (RNase H) specificity of human immunodeficiency virus reverse transcriptase (HIV-RT) using heteropolymeric RNAs hybridized to complementary DNAs. Experiments were performed in the presence of excess challenger polymer (poly(rA)-oligo(dT)) to reveal cleavages resulting from single enzyme binding events. Previous results suggested that initial RNase H directed cleavages were a fixed distance from a DNA primer terminus recessed on an RNA template, i.e. determined by the binding position of the polymerase active site. The influences of recessed RNA termini were not evaluated. In current experiments, RNAs that were 30, 42, or 50 nucleotides long were hybridized to the same 88 nucleotide long complementary DNA, such that the 5' terminal nucleotide of each RNA was hybridized to the 29th nucleotide from the 3' end of the DNA. In all three cases the RNA was initially cleaved between the 19th and 21st nucleotides from its 5' end. Thus, cleavage was not coordinated by the recessed 3' terminus of the RNA. Subsequent cleavages in either direction on the RNA were also observed. An insertion within the RNA that moved the preferred initial cut sequence 10 nucleotides further from the 5' end of the RNA decreased but did not abolish cleavage at the sequence. However, changing the nucleotide sequence in the region of the preferred cleavage either by the insertion experiment or mutagenesis did not significantly alter its capacity for cleavage. These results demonstrated a dominant position preference, plus a sequence priority. In another experiment, a 25 nucleotide long DNA was hybridized such that its 3' terminal nucleotide was 9 nucleotides from the 5' end of a 60 nucleotide complementary RNA. The preferred RNA cleavage sequence discussed above, was 10-14 nucleotides upstream of the 3' end of the DNA. However, initial cleavages occurred 17-20 nucleotides from the DNA 3' end, consistent with cleavage being coordinated by the recessed 3' terminus of the DNA primer.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D004279 DNA, Viral Deoxyribonucleic acid that makes up the genetic material of viruses. Viral DNA
D006678 HIV Human immunodeficiency virus. A non-taxonomic and historical term referring to any of two species, specifically HIV-1 and/or HIV-2. Prior to 1986, this was called human T-lymphotropic virus type III/lymphadenopathy-associated virus (HTLV-III/LAV). From 1986-1990, it was an official species called HIV. Since 1991, HIV was no longer considered an official species name; the two species were designated HIV-1 and HIV-2. AIDS Virus,HTLV-III,Human Immunodeficiency Viruses,Human T-Cell Lymphotropic Virus Type III,Human T-Lymphotropic Virus Type III,LAV-HTLV-III,Lymphadenopathy-Associated Virus,Acquired Immune Deficiency Syndrome Virus,Acquired Immunodeficiency Syndrome Virus,Human Immunodeficiency Virus,Human T Cell Lymphotropic Virus Type III,Human T Lymphotropic Virus Type III,Human T-Cell Leukemia Virus Type III,Immunodeficiency Virus, Human,Immunodeficiency Viruses, Human,Virus, Human Immunodeficiency,Viruses, Human Immunodeficiency,AIDS Viruses,Human T Cell Leukemia Virus Type III,Lymphadenopathy Associated Virus,Lymphadenopathy-Associated Viruses,Virus, AIDS,Virus, Lymphadenopathy-Associated,Viruses, AIDS,Viruses, Lymphadenopathy-Associated
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012194 RNA-Directed DNA Polymerase An enzyme that synthesizes DNA on an RNA template. It is encoded by the pol gene of retroviruses and by certain retrovirus-like elements. EC 2.7.7.49. DNA Polymerase, RNA-Directed,RNA-Dependent DNA Polymerase,Reverse Transcriptase,RNA Transcriptase,Revertase,DNA Polymerase, RNA Directed,DNA Polymerase, RNA-Dependent,RNA Dependent DNA Polymerase,RNA Directed DNA Polymerase
D012367 RNA, Viral Ribonucleic acid that makes up the genetic material of viruses. Viral RNA
D013379 Substrate Specificity A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts. Specificities, Substrate,Specificity, Substrate,Substrate Specificities
D016914 Ribonuclease H A ribonuclease that specifically cleaves the RNA moiety of RNA:DNA hybrids. It has been isolated from a wide variety of prokaryotic and eukaryotic organisms as well as RETROVIRUSES. Endoribonuclease H,RNase H,Ribonuclease H, Calf Thymus,RNAase H

Related Publications

J J DeStefano, and L M Mallaber, and P J Fay, and R A Bambara
April 2002, Biochemistry,
J J DeStefano, and L M Mallaber, and P J Fay, and R A Bambara
April 1989, The Journal of biological chemistry,
J J DeStefano, and L M Mallaber, and P J Fay, and R A Bambara
March 1995, The Journal of biological chemistry,
J J DeStefano, and L M Mallaber, and P J Fay, and R A Bambara
July 2014, Antimicrobial agents and chemotherapy,
J J DeStefano, and L M Mallaber, and P J Fay, and R A Bambara
February 1992, Journal of virology,
J J DeStefano, and L M Mallaber, and P J Fay, and R A Bambara
July 1991, Biochemistry,
J J DeStefano, and L M Mallaber, and P J Fay, and R A Bambara
January 1991, The Journal of general virology,
J J DeStefano, and L M Mallaber, and P J Fay, and R A Bambara
October 2000, Proceedings of the National Academy of Sciences of the United States of America,
J J DeStefano, and L M Mallaber, and P J Fay, and R A Bambara
December 2005, Antimicrobial agents and chemotherapy,
Copied contents to your clipboard!