Isolation and genetic analysis of extragenic suppressors of the hyper-deletion phenotype of the Saccharomyces cerevisiae hpr1 delta mutation. 1995

H Santos-Rosa, and A Aguilera
Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Spain.

The HPR1 gene of Saccharomyces cerevisiae is involved in maintaining low levels of deletions between DNA repeats. To understand how deletions initiate in the absence of the Hpr1 protein and the mechanisms of recombination leading to deletions in S. cerevisiae, we have isolated mutations as suppressors of the hyper-deletion phenotype of the hpr1 delta mutation. The mutations defined five different genes called HRS for hyper-recombination suppression. They suppress the hyper-deletion phenotype of hpr1 delta strains for three direct repeat systems tested. The mutations eliminated the hyper-deletion phenotype of hpr1 delta strains either completely (hrs1-1 and hrs2-1) or significantly (hrs3-1, hrs4-1 and hrs5-1). None of the mutations has a clear effect on the levels of spontaneous and double-strand break-induced deletions. Among other characteristics we have found are the following: (1) one mutation, hrs1-1, reduces the frequency of deletions in rad52-1 strains 20-fold, suggesting that the HRS1 gene is involved in the formation of RAD52-independent deletions; (2) the hrs2-1 hpr1 delta mutant is sensitive to methyl-methane-sulfonate and the single mutants hpr1 delta and hrs2-1 are resistant, which suggests that the HPR1 and HRS2 proteins may have redundant DNA repair functions; (3) the hrs4-1 mutation confers a hyper-mutator phenotype and (4) the phenotype of lack of activation of gene expression observed in hpr1 delta strains is only partially suppressed by the hrs2-1 mutation, which suggests that the possible functions of the Hpr1 protein in gene expression and recombination repair can be separated. We discuss the possible relationship between the HPR1 and the HRS genes and their involvement in initiation of the events responsible for deletion formation.

UI MeSH Term Description Entries
D008540 Meiosis A type of CELL NUCLEUS division, occurring during maturation of the GERM CELLS. Two successive cell nucleus divisions following a single chromosome duplication (S PHASE) result in daughter cells with half the number of CHROMOSOMES as the parent cells. M Phase, Meiotic,Meiotic M Phase,M Phases, Meiotic,Meioses,Meiotic M Phases,Phase, Meiotic M,Phases, Meiotic M
D008741 Methyl Methanesulfonate An alkylating agent in cancer therapy that may also act as a mutagen by interfering with and causing damage to DNA. Methylmethane Sulfonate,Dimethylsulfonate,Mesilate, Methyl,Methyl Mesylate,Methyl Methylenesulfonate,Methylmesilate,Mesylate, Methyl,Methanesulfonate, Methyl,Methyl Mesilate
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D009687 Nuclear Proteins Proteins found in the nucleus of a cell. Do not confuse with NUCLEOPROTEINS which are proteins conjugated with nucleic acids, that are not necessarily present in the nucleus. Nucleolar Protein,Nucleolar Proteins,Nuclear Protein,Protein, Nuclear,Protein, Nucleolar,Proteins, Nuclear,Proteins, Nucleolar
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D011995 Recombination, Genetic Production of new arrangements of DNA by various mechanisms such as assortment and segregation, CROSSING OVER; GENE CONVERSION; GENETIC TRANSFORMATION; GENETIC CONJUGATION; GENETIC TRANSDUCTION; or mixed infection of viruses. Genetic Recombination,Recombination,Genetic Recombinations,Recombinations,Recombinations, Genetic
D012091 Repetitive Sequences, Nucleic Acid Sequences of DNA or RNA that occur in multiple copies. There are several types: INTERSPERSED REPETITIVE SEQUENCES are copies of transposable elements (DNA TRANSPOSABLE ELEMENTS or RETROELEMENTS) dispersed throughout the genome. TERMINAL REPEAT SEQUENCES flank both ends of another sequence, for example, the long terminal repeats (LTRs) on RETROVIRUSES. Variations may be direct repeats, those occurring in the same direction, or inverted repeats, those opposite to each other in direction. TANDEM REPEAT SEQUENCES are copies which lie adjacent to each other, direct or inverted (INVERTED REPEAT SEQUENCES). DNA Repetitious Region,Direct Repeat,Genes, Selfish,Nucleic Acid Repetitive Sequences,Repetitive Region,Selfish DNA,Selfish Genes,DNA, Selfish,Repetitious Region, DNA,Repetitive Sequence,DNA Repetitious Regions,DNAs, Selfish,Direct Repeats,Gene, Selfish,Repeat, Direct,Repeats, Direct,Repetitious Regions, DNA,Repetitive Regions,Repetitive Sequences,Selfish DNAs,Selfish Gene
D003433 Crosses, Genetic Deliberate breeding of two different individuals that results in offspring that carry part of the genetic material of each parent. The parent organisms must be genetically compatible and may be from different varieties or closely related species. Cross, Genetic,Genetic Cross,Genetic Crosses
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D005656 Fungal Proteins Proteins found in any species of fungus. Fungal Gene Products,Fungal Gene Proteins,Fungal Peptides,Gene Products, Fungal,Yeast Proteins,Gene Proteins, Fungal,Peptides, Fungal,Proteins, Fungal

Related Publications

H Santos-Rosa, and A Aguilera
February 1994, Current genetics,
H Santos-Rosa, and A Aguilera
September 1998, Molecular & general genetics : MGG,
H Santos-Rosa, and A Aguilera
June 1986, Genetics,
H Santos-Rosa, and A Aguilera
February 1981, Journal of bacteriology,
Copied contents to your clipboard!