The gene encoding the periplasmic cyclophilin homologue, PPIase A, in Escherichia coli, is expressed from four promoters, three of which are activated by the cAMP-CRP complex and negatively regulated by the CytR repressor. 1994

M Nørregaard-Madsen, and B Mygind, and R Pedersen, and P Valentin-Hansen, and L Søgaard-Andersen
Department of Molecular Biology, Odense University, Denmark.

The rot gene in Escherichia coli encodes PPIase A, a periplasmic peptidyl-prolyl cis-trans isomerase with homology to the cyclophilin family of proteins. Here it is demonstrated that rot is expressed in a complex manner from four overlapping promoters and that the rot regulatory region is unusually compact, containing a close array of sites for DNA-binding proteins. The three most upstream rot promoters are activated by the global gene regulatory cAMP-CRP complex and negatively regulated by the CytR repressor protein. Activation of these three promoters occurs by binding of cAMP-CRP to two sites separated by 53 bp. Moreover, one of the cAMP-CRP complexes is involved in the activation of both a Class I and a Class II promoter. Repression takes place by the formation of a CytR/cAMP-CRP/DNA nucleoprotein complex consisting of the two cAMP-CRP molecules and CytR bound in between. The two regulators bind co-operatively to the DNA overlapping the three upstream promoters, simultaneously quenching the cAMP-CRP activator function. These results expand the CytR regulon to include a gene whose product has no known function in ribo- and deoxyribonucleoside catabolism or transport.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D012097 Repressor Proteins Proteins which maintain the transcriptional quiescence of specific GENES or OPERONS. Classical repressor proteins are DNA-binding proteins that are normally bound to the OPERATOR REGION of an operon, or the ENHANCER SEQUENCES of a gene until a signal occurs that causes their release. Repressor Molecules,Transcriptional Silencing Factors,Proteins, Repressor,Silencing Factors, Transcriptional
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D002373 Cyclic AMP Receptor Protein A transcriptional regulator in prokaryotes which, when activated by binding cyclic AMP, acts at several promoters. Cyclic AMP receptor protein was originally identified as a catabolite gene activator protein. It was subsequently shown to regulate several functions unrelated to catabolism, and to be both a negative and a positive regulator of transcription. Cell surface cyclic AMP receptors are not included (CYCLIC AMP RECEPTORS), nor are the eukaryotic cytoplasmic cyclic AMP receptor proteins, which are the regulatory subunits of CYCLIC AMP-DEPENDENT PROTEIN KINASES. Catabolic Gene Activators,Catabolite Activator Protein,Catabolite Gene Activator Protein,Catabolite Gene Activator Proteins,Activator Protein, Catabolite,Activator Proteins, Catabolite,Activator, Catabolic Gene,Activators, Catabolic Gene,Catabolic Gene Activator,Catabolite Activator Proteins,Catabolite Regulator Protein,Catabolite Regulator Proteins,Cyclic AMP Receptor Proteins,Gene Activator, Catabolic,Gene Activators, Catabolic,Protein, Catabolite Activator,Protein, Catabolite Regulator,Proteins, Catabolite Activator,Proteins, Catabolite Regulator,Regulator Protein, Catabolite,Regulator Proteins, Catabolite,cAMP Receptor Protein,cAMP Receptor Proteins,Protein, cAMP Receptor,Proteins, cAMP Receptor,Receptor Protein, cAMP,Receptor Proteins, cAMP
D002874 Chromosome Mapping Any method used for determining the location of and relative distances between genes on a chromosome. Gene Mapping,Linkage Mapping,Genome Mapping,Chromosome Mappings,Gene Mappings,Genome Mappings,Linkage Mappings,Mapping, Chromosome,Mapping, Gene,Mapping, Genome,Mapping, Linkage,Mappings, Chromosome,Mappings, Gene,Mappings, Genome,Mappings, Linkage
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D000242 Cyclic AMP An adenine nucleotide containing one phosphate group which is esterified to both the 3'- and 5'-positions of the sugar moiety. It is a second messenger and a key intracellular regulator, functioning as a mediator of activity for a number of hormones, including epinephrine, glucagon, and ACTH. Adenosine Cyclic 3',5'-Monophosphate,Adenosine Cyclic 3,5 Monophosphate,Adenosine Cyclic Monophosphate,Adenosine Cyclic-3',5'-Monophosphate,Cyclic AMP, (R)-Isomer,Cyclic AMP, Disodium Salt,Cyclic AMP, Monoammonium Salt,Cyclic AMP, Monopotassium Salt,Cyclic AMP, Monosodium Salt,Cyclic AMP, Sodium Salt,3',5'-Monophosphate, Adenosine Cyclic,AMP, Cyclic,Adenosine Cyclic 3',5' Monophosphate,Cyclic 3',5'-Monophosphate, Adenosine,Cyclic Monophosphate, Adenosine,Cyclic-3',5'-Monophosphate, Adenosine,Monophosphate, Adenosine Cyclic

Related Publications

M Nørregaard-Madsen, and B Mygind, and R Pedersen, and P Valentin-Hansen, and L Søgaard-Andersen
October 1989, Molecular microbiology,
M Nørregaard-Madsen, and B Mygind, and R Pedersen, and P Valentin-Hansen, and L Søgaard-Andersen
August 1998, Molecular microbiology,
M Nørregaard-Madsen, and B Mygind, and R Pedersen, and P Valentin-Hansen, and L Søgaard-Andersen
September 1992, Journal of molecular biology,
M Nørregaard-Madsen, and B Mygind, and R Pedersen, and P Valentin-Hansen, and L Søgaard-Andersen
February 1991, Molecular microbiology,
M Nørregaard-Madsen, and B Mygind, and R Pedersen, and P Valentin-Hansen, and L Søgaard-Andersen
July 1996, Journal of molecular biology,
M Nørregaard-Madsen, and B Mygind, and R Pedersen, and P Valentin-Hansen, and L Søgaard-Andersen
April 1991, Molecular microbiology,
M Nørregaard-Madsen, and B Mygind, and R Pedersen, and P Valentin-Hansen, and L Søgaard-Andersen
March 1997, Journal of molecular biology,
M Nørregaard-Madsen, and B Mygind, and R Pedersen, and P Valentin-Hansen, and L Søgaard-Andersen
February 2011, Microbiology (Reading, England),
M Nørregaard-Madsen, and B Mygind, and R Pedersen, and P Valentin-Hansen, and L Søgaard-Andersen
March 1990, Molecular microbiology,
M Nørregaard-Madsen, and B Mygind, and R Pedersen, and P Valentin-Hansen, and L Søgaard-Andersen
September 1990, Molecular microbiology,
Copied contents to your clipboard!