Transcription of rpoH, encoding the Escherichia coli heat-shock regulator sigma32, is negatively controlled by the cAMP-CRP/CytR nucleoprotein complex. 1998

B H Kallipolitis, and P Valentin-Hansen
Department of Molecular Biology, Odense University, Denmark.

In Escherichia coli, the rpoH gene encoding the essential heat-shock regulator sigma32, is expressed in a complex manner. Transcription occurs from four promoters (P1, P3, P4 and P5) and is modulated by several factors including (i) two sigma factors (sigma70 and sigmaE); (ii) the global regulator CRP; and (iii) the DnaA protein. Here, a further dissection of the rpoH regulatory region has revealed that an additional transcription control exists that appears to link rpoH expression to nucleoside metabolism. The cAMP-CRP complex and the CytR anti-activator bind co-operatively to the promoter region forming a repression complex that overlaps the sigmaE-dependent P3 promoter and the sigma70-dependent P4 and P5 promoters. During steady-state growth conditions with glycerol as the carbon and energy source, transcription from P3, P4 and P5 is reduced approximately threefold by CytR, whereas transcription from the upstream promoter, P1, appears to be unaffected. Furthermore, in strains that slightly overproduce CytR, transcription from P3, P4 and P5 is reduced even further (approximately 10-fold), and repression can be fully neutralized by the addition of the inducer cytidine to the growth medium. In the induced state, P4 is the strongest promoter and, together with P3 and P5, it is responsible for most rpoH transcription (65-70%). At present, CytR has been shown to 'fine tune' transcription of two genes (rpoH and ppiA) that are connected with protein-folding activities. These findings suggest that additional assistance in protein folding is required under conditions in which CytR is induced (i.e. in the presence of nucleosides).

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009698 Nucleoproteins Proteins conjugated with nucleic acids. Nucleoprotein
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D012097 Repressor Proteins Proteins which maintain the transcriptional quiescence of specific GENES or OPERONS. Classical repressor proteins are DNA-binding proteins that are normally bound to the OPERATOR REGION of an operon, or the ENHANCER SEQUENCES of a gene until a signal occurs that causes their release. Repressor Molecules,Transcriptional Silencing Factors,Proteins, Repressor,Silencing Factors, Transcriptional
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D002373 Cyclic AMP Receptor Protein A transcriptional regulator in prokaryotes which, when activated by binding cyclic AMP, acts at several promoters. Cyclic AMP receptor protein was originally identified as a catabolite gene activator protein. It was subsequently shown to regulate several functions unrelated to catabolism, and to be both a negative and a positive regulator of transcription. Cell surface cyclic AMP receptors are not included (CYCLIC AMP RECEPTORS), nor are the eukaryotic cytoplasmic cyclic AMP receptor proteins, which are the regulatory subunits of CYCLIC AMP-DEPENDENT PROTEIN KINASES. Catabolic Gene Activators,Catabolite Activator Protein,Catabolite Gene Activator Protein,Catabolite Gene Activator Proteins,Activator Protein, Catabolite,Activator Proteins, Catabolite,Activator, Catabolic Gene,Activators, Catabolic Gene,Catabolic Gene Activator,Catabolite Activator Proteins,Catabolite Regulator Protein,Catabolite Regulator Proteins,Cyclic AMP Receptor Proteins,Gene Activator, Catabolic,Gene Activators, Catabolic,Protein, Catabolite Activator,Protein, Catabolite Regulator,Proteins, Catabolite Activator,Proteins, Catabolite Regulator,Regulator Protein, Catabolite,Regulator Proteins, Catabolite,cAMP Receptor Protein,cAMP Receptor Proteins,Protein, cAMP Receptor,Proteins, cAMP Receptor,Receptor Protein, cAMP,Receptor Proteins, cAMP
D002874 Chromosome Mapping Any method used for determining the location of and relative distances between genes on a chromosome. Gene Mapping,Linkage Mapping,Genome Mapping,Chromosome Mappings,Gene Mappings,Genome Mappings,Linkage Mappings,Mapping, Chromosome,Mapping, Gene,Mapping, Genome,Mapping, Linkage,Mappings, Chromosome,Mappings, Gene,Mappings, Genome,Mappings, Linkage
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial

Related Publications

B H Kallipolitis, and P Valentin-Hansen
September 1995, Molecular microbiology,
B H Kallipolitis, and P Valentin-Hansen
April 2006, Extremophiles : life under extreme conditions,
B H Kallipolitis, and P Valentin-Hansen
October 1989, Molecular microbiology,
B H Kallipolitis, and P Valentin-Hansen
December 1986, Journal of bacteriology,
Copied contents to your clipboard!