Studies on the comparative toxicity of S-(1,2-dichlorovinyl)-L-cysteine, S-(1,2-dichlorovinyl)-L-homocysteine and 1,1,2-trichloro-3,3,3-trifluoro-1-propene in the Fischer 344 rat. 1994

M L Anthony, and C R Beddell, and J C Lindon, and J K Nicholson
Department of Chemistry, Birkbeck College, University of London, UK.

The renal tubular toxicity of various halogenated xenobiotics has been attributed to their enzymatic bioactivation to reactive intermediates by S-conjugation. A combination of high resolution proton nuclear magnetic resonance (1H NMR) spectroscopy of urine, renal histopathology and more routinely used clinical chemistry methods has been used to explore the acute toxic and biochemical effects of S-(1,2-dichlorovinyl)-L-cysteine (DCVC), S-(1,2-dichlorovinyl)-L-homocysteine (DCVHC) and 1,1,2-trichloro-3,3,3-trifluoro-1-propene (TCTFP) up to 48 h following their administration to male Fischer 344 (F344) rats. In the absence of gross renal pathology, 1H NMR urinalysis revealed increased excretion of the tricarboxylic acid cycle intermediates citrate and succinate following DCVC administration. In contrast, both DCVHC and TCTFP produced functional defects in the S2 and S3 segments of the proximal tubule that were confirmed histologically. In these cases, 1H NMR urinalysis revealed increased excretion of glucose, L-lactate, acetate and 3-D-hydroxybutyrate (HB) as well as selective amino aciduria (alanine, valine, glutamate and glutamine). The significance of the proximal nephropathies induced by DCVHC and TCTFP is discussed in relation to biochemical observations on other xenobiotics that are toxic by similar mechanisms.

UI MeSH Term Description Entries
D007672 Kidney Cortex The outer zone of the KIDNEY, beneath the capsule, consisting of KIDNEY GLOMERULUS; KIDNEY TUBULES, DISTAL; and KIDNEY TUBULES, PROXIMAL. Cortex, Kidney
D007687 Kidney Tubules, Proximal The renal tubule portion that extends from the BOWMAN CAPSULE in the KIDNEY CORTEX into the KIDNEY MEDULLA. The proximal tubule consists of a convoluted proximal segment in the cortex, and a distal straight segment descending into the medulla where it forms the U-shaped LOOP OF HENLE. Proximal Kidney Tubule,Proximal Renal Tubule,Kidney Tubule, Proximal,Proximal Kidney Tubules,Proximal Renal Tubules,Renal Tubule, Proximal,Renal Tubules, Proximal,Tubule, Proximal Kidney,Tubule, Proximal Renal,Tubules, Proximal Kidney,Tubules, Proximal Renal
D008297 Male Males
D009336 Necrosis The death of cells in an organ or tissue due to disease, injury or failure of the blood supply.
D011916 Rats, Inbred F344 An inbred strain of rat that is used for general BIOMEDICAL RESEARCH purposes. Fischer Rats,Rats, Inbred CDF,Rats, Inbred Fischer 344,Rats, F344,Rats, Inbred Fisher 344,CDF Rat, Inbred,CDF Rats, Inbred,F344 Rat,F344 Rat, Inbred,F344 Rats,F344 Rats, Inbred,Inbred CDF Rat,Inbred CDF Rats,Inbred F344 Rat,Inbred F344 Rats,Rat, F344,Rat, Inbred CDF,Rat, Inbred F344,Rats, Fischer
D001786 Blood Glucose Glucose in blood. Blood Sugar,Glucose, Blood,Sugar, Blood
D003545 Cysteine A thiol-containing non-essential amino acid that is oxidized to form CYSTINE. Cysteine Hydrochloride,Half-Cystine,L-Cysteine,Zinc Cysteinate,Half Cystine,L Cysteine
D006710 Homocysteine A thiol-containing amino acid formed by a demethylation of METHIONINE. 2-amino-4-mercaptobutyric acid,Homocysteine, L-Isomer,2 amino 4 mercaptobutyric acid,Homocysteine, L Isomer,L-Isomer Homocysteine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D017402 Chlorofluorocarbons A series of hydrocarbons containing both chlorine and fluorine. These have been used as refrigerants, blowing agents, cleaning fluids, solvents, and as fire extinguishing agents. They have been shown to cause stratospheric ozone depletion and have been banned for many uses. Freons,Chlorofluorocarbon Derivatives,Freon,Derivatives, Chlorofluorocarbon

Related Publications

M L Anthony, and C R Beddell, and J C Lindon, and J K Nicholson
July 1989, Biochemical pharmacology,
M L Anthony, and C R Beddell, and J C Lindon, and J K Nicholson
October 1987, Molecular pharmacology,
M L Anthony, and C R Beddell, and J C Lindon, and J K Nicholson
January 1995, Drug metabolism and disposition: the biological fate of chemicals,
M L Anthony, and C R Beddell, and J C Lindon, and J K Nicholson
April 1994, The Journal of pharmacology and experimental therapeutics,
M L Anthony, and C R Beddell, and J C Lindon, and J K Nicholson
August 1989, Toxicology and applied pharmacology,
M L Anthony, and C R Beddell, and J C Lindon, and J K Nicholson
October 1986, The Journal of biological chemistry,
M L Anthony, and C R Beddell, and J C Lindon, and J K Nicholson
December 1984, Journal of applied toxicology : JAT,
M L Anthony, and C R Beddell, and J C Lindon, and J K Nicholson
November 1989, Toxicology and applied pharmacology,
M L Anthony, and C R Beddell, and J C Lindon, and J K Nicholson
March 1963, Journal of medicinal chemistry,
Copied contents to your clipboard!