Protection from oxidation enhances the survival of cultured mesencephalic neurons. 1995

C A Colton, and F Pagan, and J Snell, and J S Colton, and A Cummins, and D L Gilbert
Department of Physiology and Biophysics, Georgetown University Medical School, Washington, DC 20007, USA.

Oxidative stress has been linked to the destruction of dopaminergic neurons in the substantia nigra and may be a significant factor in both Parkinson's disease and MPTP toxicity. Using primary cultures of embryonic rat mesencephalon and standard immunocytochemical techniques, we have examined the survival of tyrosine hydroxylase-containing (TH+) neurons cultured in the presence of antioxidants and/or in an environment of low oxygen partial pressure. The number of TH+ neurons increased approximately twofold if superoxide dismutase, glutathione peroxidase (GP), or N-acetyl cysteine (NAC) were added to the culture media. Exposure of the neurons to a 5% oxygen environment (38 torr, i.e., 38 mm Hg) also increased the survival of TH+ neurons by about twofold. A dramatic enhancement of survival, however, was seen when NAC was used in combination with the 5% oxygen environment. In this case, the number of TH+ neurons increased fourfold from nontreated controls. Morphological changes were also noted. GP increased the average neurite length while NAC increased the average area of the cell body in the TH+ neuron. These results suggest that manipulation of oxidative conditions by changing the ambient O2 tension or the level of antioxidants promotes survival of TH+ neurons in culture and may have implications for transplantation therapies in Parkinson's disease.

UI MeSH Term Description Entries
D008636 Mesencephalon The middle of the three primitive cerebral vesicles of the embryonic brain. Without further subdivision, midbrain develops into a short, constricted portion connecting the PONS and the DIENCEPHALON. Midbrain contains two major parts, the dorsal TECTUM MESENCEPHALI and the ventral TEGMENTUM MESENCEPHALI, housing components of auditory, visual, and other sensorimoter systems. Midbrain,Mesencephalons,Midbrains
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010100 Oxygen An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration. Dioxygen,Oxygen-16,Oxygen 16
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D005979 Glutathione Peroxidase An enzyme catalyzing the oxidation of 2 moles of GLUTATHIONE in the presence of HYDROGEN PEROXIDE to yield oxidized glutathione and water. Cytosolic Glutathione Peroxidase,Glutathione Lipoperoxidase,Selenoglutathione Peroxidase,Glutathione Peroxidase, Cytosolic,Lipoperoxidase, Glutathione,Peroxidase, Glutathione,Peroxidase, Selenoglutathione
D000111 Acetylcysteine The N-acetyl derivative of CYSTEINE. It is used as a mucolytic agent to reduce the viscosity of mucous secretions. It has also been shown to have antiviral effects in patients with HIV due to inhibition of viral stimulation by reactive oxygen intermediates. Mercapturic Acid,Acemuc,Acetabs,Acetylcystein AL,Acetylcystein Atid,Acetylcystein Heumann,Acetylcystein Trom,Acetylcysteine Hydrochloride,Acetylcysteine Sodium,Acetylcysteine Zinc,Acetylcysteine, (D)-Isomer,Acetylcysteine, (DL)-Isomer,Acetylcysteine, Monoammonium Salt,Acetylcysteine, Monosodium Salt,Acetylin,Acetyst,Acétylcystéine GNR,Airbron,Alveolex,Azubronchin,Bisolvon NAC,Bromuc,Broncho-Fips,Broncholysin,Broncoclar,Codotussyl,Cystamucil,Dampo Mucopect,Eurespiran,Exomuc,Fabrol,Fluimucil,Fluprowit,Frekatuss,Genac,Hoestil,Ilube,Jenacystein,Jenapharm,Lantamed,Larylin NAC,Lindocetyl,M-Pectil,Muciteran,Muco Sanigen,Mucomyst,Mucosil,Mucosol,Mucosolvin,N-Acetyl-L-cysteine,N-Acetylcysteine,NAC AL,NAC Zambon,Optipect Hustengetränk,Siccoral,Siran,Solmucol,acebraus,durabronchal,mentopin Acetylcystein,Acetylcystein, mentopin,Acid, Mercapturic,Broncho Fips,BronchoFips,Hustengetränk, Optipect,Hydrochloride, Acetylcysteine,M Pectil,MPectil,Monoammonium Salt Acetylcysteine,Monosodium Salt Acetylcysteine,Mucopect, Dampo,N Acetyl L cysteine,N Acetylcysteine,NAC, Bisolvon,Sanigen, Muco,Sodium, Acetylcysteine,Zambon, NAC,Zinc, Acetylcysteine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013482 Superoxide Dismutase An oxidoreductase that catalyzes the reaction between SUPEROXIDES and hydrogen to yield molecular oxygen and hydrogen peroxide. The enzyme protects the cell against dangerous levels of superoxide. Hemocuprein,Ag-Zn Superoxide Dismutase,Cobalt Superoxide Dismutase,Cu-Superoxide Dismutase,Erythrocuprein,Fe-Superoxide Dismutase,Fe-Zn Superoxide Dismutase,Iron Superoxide Dismutase,Manganese Superoxide Dismutase,Mn-SOD,Mn-Superoxide Dismutase,Ag Zn Superoxide Dismutase,Cu Superoxide Dismutase,Dismutase, Ag-Zn Superoxide,Dismutase, Cobalt Superoxide,Dismutase, Cu-Superoxide,Dismutase, Fe-Superoxide,Dismutase, Fe-Zn Superoxide,Dismutase, Iron Superoxide,Dismutase, Manganese Superoxide,Dismutase, Mn-Superoxide,Dismutase, Superoxide,Fe Superoxide Dismutase,Fe Zn Superoxide Dismutase,Mn SOD,Mn Superoxide Dismutase,Superoxide Dismutase, Ag-Zn,Superoxide Dismutase, Cobalt,Superoxide Dismutase, Fe-Zn,Superoxide Dismutase, Iron,Superoxide Dismutase, Manganese
D014446 Tyrosine 3-Monooxygenase An enzyme that catalyzes the conversion of L-tyrosine, tetrahydrobiopterin, and oxygen to 3,4-dihydroxy-L-phenylalanine, dihydrobiopterin, and water. EC 1.14.16.2. Tyrosine Hydroxylase,3-Monooxygenase, Tyrosine,Hydroxylase, Tyrosine,Tyrosine 3 Monooxygenase

Related Publications

C A Colton, and F Pagan, and J Snell, and J S Colton, and A Cummins, and D L Gilbert
February 1993, Journal of neuroscience research,
C A Colton, and F Pagan, and J Snell, and J S Colton, and A Cummins, and D L Gilbert
January 2003, The Journal of neuroscience : the official journal of the Society for Neuroscience,
C A Colton, and F Pagan, and J Snell, and J S Colton, and A Cummins, and D L Gilbert
October 1995, Brain research. Developmental brain research,
C A Colton, and F Pagan, and J Snell, and J S Colton, and A Cummins, and D L Gilbert
February 1996, Journal of neurochemistry,
C A Colton, and F Pagan, and J Snell, and J S Colton, and A Cummins, and D L Gilbert
December 2009, Brain research,
C A Colton, and F Pagan, and J Snell, and J S Colton, and A Cummins, and D L Gilbert
January 2005, Neuroscience,
C A Colton, and F Pagan, and J Snell, and J S Colton, and A Cummins, and D L Gilbert
October 2004, Cell and tissue research,
C A Colton, and F Pagan, and J Snell, and J S Colton, and A Cummins, and D L Gilbert
December 2001, Neuroreport,
C A Colton, and F Pagan, and J Snell, and J S Colton, and A Cummins, and D L Gilbert
February 2003, Brain research,
C A Colton, and F Pagan, and J Snell, and J S Colton, and A Cummins, and D L Gilbert
January 2012, PloS one,
Copied contents to your clipboard!