Microglial conditioned medium promotes survival and development of cultured mesencephalic neurons from embryonic rat brain. 1993

K Nagata, and N Takei, and K Nakajima, and H Saito, and S Kohsaka
Department of Neurochemistry, National Institute of Neuroscience, Tokyo, Japan.

We previously reported that microglial conditioned medium (Mic-CM) has a neurotrophic effect on cultured rat neocortical neurons [Nakajima et al. (1989): Biomed Res 10:411-423]. In order to investigate the interaction between microglia and neurons in more detail, we determined the effects of Mic-CM on the primary cultured mesencephalic neurons from 16-day embryonic rats. The addition of Mic-CM to the culture medium significantly enhanced the survivability of neurons and promoted neurite extension in a low cell-density culture condition. In a high cell-density culture condition, Mic-CM markedly increased dopamine uptake, which was quantified by assessing the specific [3H]dopamine uptake, and also increased the dopamine content of cultured cells. Furthermore, the number of mesencephalic dopaminergic neurons, which was determined by quantitative analysis of tyrosine hydroxylase (TH)-immunoreactive cells, increased significantly in the presence of Mic-CM. These results suggest that Mic-CM enhances survival or maturation of TH-positive neurons present in cultures of the embryonic mesencephalon and that these neurotrophic effects may be due to a diffusible factor(s) from microglia.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008636 Mesencephalon The middle of the three primitive cerebral vesicles of the embryonic brain. Without further subdivision, midbrain develops into a short, constricted portion connecting the PONS and the DIENCEPHALON. Midbrain contains two major parts, the dorsal TECTUM MESENCEPHALI and the ventral TEGMENTUM MESENCEPHALI, housing components of auditory, visual, and other sensorimoter systems. Midbrain,Mesencephalons,Midbrains
D009457 Neuroglia The non-neuronal cells of the nervous system. They not only provide physical support, but also respond to injury, regulate the ionic and chemical composition of the extracellular milieu, participate in the BLOOD-BRAIN BARRIER and BLOOD-RETINAL BARRIER, form the myelin insulation of nervous pathways, guide neuronal migration during development, and exchange metabolites with neurons. Neuroglia have high-affinity transmitter uptake systems, voltage-dependent and transmitter-gated ion channels, and can release transmitters, but their role in signaling (as in many other functions) is unclear. Bergmann Glia,Bergmann Glia Cells,Bergmann Glial Cells,Glia,Glia Cells,Satellite Glia,Satellite Glia Cells,Satellite Glial Cells,Glial Cells,Neuroglial Cells,Bergmann Glia Cell,Bergmann Glial Cell,Cell, Bergmann Glia,Cell, Bergmann Glial,Cell, Glia,Cell, Glial,Cell, Neuroglial,Cell, Satellite Glia,Cell, Satellite Glial,Glia Cell,Glia Cell, Bergmann,Glia Cell, Satellite,Glia, Bergmann,Glia, Satellite,Glial Cell,Glial Cell, Bergmann,Glial Cell, Satellite,Glias,Neuroglial Cell,Neuroglias,Satellite Glia Cell,Satellite Glial Cell,Satellite Glias
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D004298 Dopamine One of the catecholamine NEUROTRANSMITTERS in the brain. It is derived from TYROSINE and is the precursor to NOREPINEPHRINE and EPINEPHRINE. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (RECEPTORS, DOPAMINE) mediate its action. Hydroxytyramine,3,4-Dihydroxyphenethylamine,4-(2-Aminoethyl)-1,2-benzenediol,Dopamine Hydrochloride,Intropin,3,4 Dihydroxyphenethylamine,Hydrochloride, Dopamine

Related Publications

K Nagata, and N Takei, and K Nakajima, and H Saito, and S Kohsaka
October 1995, Brain research. Developmental brain research,
K Nagata, and N Takei, and K Nakajima, and H Saito, and S Kohsaka
January 2003, The Journal of neuroscience : the official journal of the Society for Neuroscience,
K Nagata, and N Takei, and K Nakajima, and H Saito, and S Kohsaka
November 1994, Neuroreport,
K Nagata, and N Takei, and K Nakajima, and H Saito, and S Kohsaka
October 1993, Brain research,
K Nagata, and N Takei, and K Nakajima, and H Saito, and S Kohsaka
July 1992, Journal of neurochemistry,
K Nagata, and N Takei, and K Nakajima, and H Saito, and S Kohsaka
March 2006, Journal of neuroimmunology,
K Nagata, and N Takei, and K Nakajima, and H Saito, and S Kohsaka
March 1995, Experimental neurology,
K Nagata, and N Takei, and K Nakajima, and H Saito, and S Kohsaka
October 1996, Journal of neurochemistry,
K Nagata, and N Takei, and K Nakajima, and H Saito, and S Kohsaka
October 1997, Experimental neurology,
Copied contents to your clipboard!