Metabolic diversity and antiviral activities of acyclic nucleoside phosphonates. 1995

P Aduma, and M C Connelly, and R V Srinivas, and A Fridland
Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA.

The acyclic nucleoside phosphonates (S)-1-(3-hydroxy-2-phosphonylmethoxypropyl)cytosine (HPMPC), (S)-9-(3-hydroxy-2-phosphonylmethoxypropyl)adenine (HPMPA), and 9-(2-phosphonylmethoxyethyl)adenine (PMEA) inhibited herpes simplex virus-1 replication in Vero cells, and the IC50 values ranged from 4 microM (for HPMPC and HPMPA) to 40 microM (for PMEA). Pretreatment of cells with HPMPC for 12-24 hr induced an effective antiviral state, and the cells maintained this antiviral state for > 7 days. In contrast, much larger amounts (approximately 2.5-5 x IC50 doses) of PMEA or HPMPA were required to establish an antiviral state, which lasted for only approximately 24 or 72 hr, respectively. A 12-hr treatment of the cells with the phosphonates was required for the establishment of optimal antiviral activity; surprisingly, longer durations of exposure to PMEA (but not HPMPA or HPMPC) resulted in diminished antiviral effect. We investigated the metabolism of PMEA and HPMPC to determine the cellular basis for these differences. The cellular uptake of HPMPC was approximately 8-fold greater than that of PMEA. The levels of the PMEA metabolites PMEA monophosphate and PMEA diphosphate increased for approximately 12 hr and plateaued thereafter. PMEA and its metabolites were cleared from the cells with a half-life of 4.9 hr. In contrast, the HPMPC metabolites HPMPC monophosphate (HPMPCp) and HPMPC diphosphate (HPMPCpp) accumulated throughout the 24-hr study period and, at equimolar drug concentrations (25 microM), reached intracellular levels approximately 2-3-fold greater than those of the PMEA metabolites. HPMPC also differed from PMEA in its capacity to generate a phosphodiester metabolite (HMPCp-choline), which was a predominant metabolite in HPMPC-treated cells. In addition, the rates of disappearance of intracellular metabolites of the two drugs were significantly different. Thus, the decay of HPMPCpp was quite slow and biphasic (t1/2 = 24 and 65 hr) and that of HMPCp-choline was monophasic (t1/2 = 87 hr). Together, these factors can explain the differing antiviral potencies seen with PMEA and HPMPC. The possible role of the choline adduct in the expression of antiviral activity of the drug remains to be elucidated, but the adduct may serve as an intracellular store for the long term maintenance of active HPMPCpp in cells. The results also highlight the extent of diversity in the cellular pharmacology and antiviral activities of the acyclic nucleoside phosphonates.

UI MeSH Term Description Entries
D009943 Organophosphorus Compounds Organic compounds that contain phosphorus as an integral part of the molecule. Included under this heading is broad array of synthetic compounds that are used as PESTICIDES and DRUGS. Organophosphorus Compound,Organopyrophosphorus Compound,Organopyrophosphorus Compounds,Compound, Organophosphorus,Compound, Organopyrophosphorus,Compounds, Organophosphorus,Compounds, Organopyrophosphorus
D002522 Chlorocebus aethiops A species of CERCOPITHECUS containing three subspecies: C. tantalus, C. pygerythrus, and C. sabeus. They are found in the forests and savannah of Africa. The African green monkey is the natural host of SIMIAN IMMUNODEFICIENCY VIRUS and is used in AIDS research. African Green Monkey,Cercopithecus aethiops,Cercopithecus griseoviridis,Cercopithecus griseus,Cercopithecus pygerythrus,Cercopithecus sabeus,Cercopithecus tantalus,Chlorocebus cynosuros,Chlorocebus cynosurus,Chlorocebus pygerythrus,Green Monkey,Grivet Monkey,Lasiopyga weidholzi,Malbrouck,Malbrouck Monkey,Monkey, African Green,Monkey, Green,Monkey, Grivet,Monkey, Vervet,Savanah Monkey,Vervet Monkey,Savannah Monkey,African Green Monkey,Chlorocebus cynosuro,Green Monkey, African,Green Monkeys,Grivet Monkeys,Malbrouck Monkeys,Malbroucks,Monkey, Malbrouck,Monkey, Savanah,Monkey, Savannah,Savannah Monkeys,Vervet Monkeys
D003596 Cytosine A pyrimidine base that is a fundamental unit of nucleic acids.
D000077404 Cidofovir An acyclic nucleoside phosphonate that acts as a competitive inhibitor of viral DNA polymerases. It is used in the treatment of RETINITIS caused by CYTOMEGALOVIRUS INFECTIONS and may also be useful for treating HERPESVIRUS INFECTIONS. 1-((3-Hydroxy-2-phosphonylmethoxy)propyl)cytosine,1-(3-Hydroxy-2-phosphonylmethoxypropyl)cytosine,Cidofovir Anhydrous,Cidofovir Sodium,Cidofovir, (+-)-isomer,Cidofovir, (R)-isomer,Cidofovir, Sodium Salt,GS 504,GS-504,HPMPC,Vistide,GS504
D000225 Adenine A purine base and a fundamental unit of ADENINE NUCLEOTIDES. Vitamin B 4,4, Vitamin B,B 4, Vitamin
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000998 Antiviral Agents Agents used in the prophylaxis or therapy of VIRUS DISEASES. Some of the ways they may act include preventing viral replication by inhibiting viral DNA polymerase; binding to specific cell-surface receptors and inhibiting viral penetration or uncoating; inhibiting viral protein synthesis; or blocking late stages of virus assembly. Antiviral,Antiviral Agent,Antiviral Drug,Antivirals,Antiviral Drugs,Agent, Antiviral,Agents, Antiviral,Drug, Antiviral,Drugs, Antiviral
D014709 Vero Cells A CELL LINE derived from the kidney of the African green (vervet) monkey, (CHLOROCEBUS AETHIOPS) used primarily in virus replication studies and plaque assays. Cell, Vero,Cells, Vero,Vero Cell
D017245 Foscarnet An antiviral agent used in the treatment of cytomegalovirus retinitis. Foscarnet also shows activity against human herpesviruses and HIV. Phosphonoformate,Phosphonoformic Acid,Foscarnet Barium (2:3) Salt,Foscarnet Calcium (2:3) Salt,Foscarnet Disodium Salt,Foscarnet Magnesium (2:3) Salt,Foscarnet Manganese (2+) (2:3) Salt,Foscarnet Sodium,Foscarnet Sodium Hexahydrate,Foscarnet Trilithium Salt,Foscarnet Tripotassium Salt,Foscarnet Trisodium Salt,Foscavir,Trisodium Phosphonoformate
D063065 Organophosphonates Carbon-containing phosphonic acid compounds. Included under this heading are compounds that have carbon bound to either OXYGEN atom or the PHOSPHOROUS atom of the (P Phosphonate,Phosphonates,Phosphonic Acid Esters,Acid Esters, Phosphonic,Esters, Phosphonic Acid

Related Publications

P Aduma, and M C Connelly, and R V Srinivas, and A Fridland
September 2006, Antiviral research,
P Aduma, and M C Connelly, and R V Srinivas, and A Fridland
November 2005, Nature reviews. Drug discovery,
P Aduma, and M C Connelly, and R V Srinivas, and A Fridland
November 2003, Toxicology and applied pharmacology,
P Aduma, and M C Connelly, and R V Srinivas, and A Fridland
October 2005, Current protocols in nucleic acid chemistry,
P Aduma, and M C Connelly, and R V Srinivas, and A Fridland
January 1995, Postepy biochemii,
P Aduma, and M C Connelly, and R V Srinivas, and A Fridland
September 2017, Bioorganic & medicinal chemistry,
P Aduma, and M C Connelly, and R V Srinivas, and A Fridland
January 1999, Nucleosides & nucleotides,
P Aduma, and M C Connelly, and R V Srinivas, and A Fridland
November 2015, Organic & biomolecular chemistry,
P Aduma, and M C Connelly, and R V Srinivas, and A Fridland
September 2012, European journal of medicinal chemistry,
P Aduma, and M C Connelly, and R V Srinivas, and A Fridland
December 2005, Biomedical papers of the Medical Faculty of the University Palacky, Olomouc, Czechoslovakia,
Copied contents to your clipboard!