Distribution of proteins similar to IIIManH and IIIManL of the Streptococcus salivarius phosphoenolpyruvate:mannose-glucose phosphotransferase system among oral and nonoral bacteria. 1995

M Pelletier, and M Frenette, and C Vadeboncoeur
Département de Biochimie, Faculté de Sciences, Université Laval, Québec, Canada.

In Streptococcus salivarius, the phosphoenolpyruvate (PEP):mannose-glucose phosphotransferase system, which concomitantly transports and phosphorylates mannose, glucose, fructose, and 2-deoxyglucose, is composed of the general energy-coupling proteins EI and HPr, the specific membrane-bound IIIMan, and two forms of a protein called IIIMan, with molecular weights of 38,900 (IIIManH) and 35,200 (IIIManL), that are found in the cytoplasm as well as associated with the membrane. Several lines of evidence suggest that IIIManH and/or IIIManL are involved in the control of sugar metabolism. To determine whether other bacteria possess these proteins, we tested for their presence in 28 oral streptococcus strains, 3 nonoral streptococcus strains, 2 lactococcus strains, 2 enterococcus strains, 2 bacillus strains, 1 lactobacillus strain, Staphylococcus aureus, and Escherichia coli. Three approaches were used to determine whether the IIIMan proteins were present in these bacteria: (i) Western blot (immunoblot) analysis of cytoplasmic and membrane proteins, using anti-IIIManH and anti-IIIManH rabbit polyclonal antibodies; (ii) analysis of PEP-dependent phosphoproteins by polyacrylamide gel electrophoresis; and (iii) inhibition by anti-IIIMan antibodies of the PEP-dependent phosphorylation of 2-deoxyglucose (a mannose analog) by crude cellular extracts. Only the species S. salivarius and Streptococcus vestibularis possessed the two forms of IIIMan. Fifteen other streptococcal species possessed one protein with a molecular weight between 35,200 and 38,900 that cross-reacted with both antibodies. In the case of 9 species, a protein possessing the same electrophoretic mobility was phosphorylated at the expense of PEP. No such phosphoprotein, however, could be detected in the other six species. A III(Man)-like protein with a molecular weight of 35,500 was also detected in Lactobacillus casei by Western blot experiments as well as by PEP-dependent phosphoprotein analysis, and a protein with a molecular weight of 38,900 that cross-reacted with anti-III(Man) antibodies was detected in Lactococcus lactis. In several cases, the involvement of these putative III(Man) proteins in the PEP-dependent phosphorylation of 2-deoxyglucose was substantiated by the inhibition of phosphorylation activity of anti-III(Man) antibodies. No proteins cross-reacting with anti-III(Man) antibodies were detected in enterococci, bacilli, and E. coli. In S. aureus, a membrane protein with a molecular weight of 50,000 reacted strongly with the antibodies. This protein, however, was not phosphorylated at the expense of PEP.

UI MeSH Term Description Entries
D007780 Lacticaseibacillus casei A rod-shaped bacterium isolated from milk and cheese, dairy products and dairy environments, sour dough, cow dung, silage, and human mouth, human intestinal contents and stools, and the human vagina. L. casei is CATALASE positive. Lactobacillus casei
D009055 Mouth The oval-shaped oral cavity located at the apex of the digestive tract and consisting of two parts: the vestibule and the oral cavity proper. Oral Cavity,Cavitas Oris,Cavitas oris propria,Mouth Cavity Proper,Oral Cavity Proper,Vestibule Oris,Vestibule of the Mouth,Cavity, Oral
D010731 Phosphoenolpyruvate Sugar Phosphotransferase System The bacterial sugar phosphotransferase system (PTS) that catalyzes the transfer of the phosphoryl group from phosphoenolpyruvate to its sugar substrates (the PTS sugars) concomitant with the translocation of these sugars across the bacterial membrane. The phosphorylation of a given sugar requires four proteins, two general proteins, Enzyme I and HPr and a pair of sugar-specific proteins designated as the Enzyme II complex. The PTS has also been implicated in the induction of synthesis of some catabolic enzyme systems required for the utilization of sugars that are not substrates of the PTS as well as the regulation of the activity of ADENYLYL CYCLASES. EC 2.7.1.-. Phosphoenolpyruvate Hexose Phosphotransferases,Phosphoenolpyruvate-Glycose Phosphotransferase System,Hexose Phosphotransferases, Phosphoenolpyruvate,Phosphoenolpyruvate Glycose Phosphotransferase System,Phosphotransferase System, Phosphoenolpyruvate-Glycose,Phosphotransferases, Phosphoenolpyruvate Hexose,System, Phosphoenolpyruvate-Glycose Phosphotransferase
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D012015 Reference Standards A basis of value established for the measure of quantity, weight, extent or quality, e.g. weight standards, standard solutions, methods, techniques, and procedures used in diagnosis and therapy. Standard Preparations,Standards, Reference,Preparations, Standard,Standardization,Standards,Preparation, Standard,Reference Standard,Standard Preparation,Standard, Reference
D004755 Enterobacteriaceae A family of gram-negative, facultatively anaerobic, rod-shaped bacteria that do not form endospores. Its organisms are distributed worldwide with some being saprophytes and others being plant and animal parasites. Many species are of considerable economic importance due to their pathogenic effects on agriculture and livestock. Coliform Bacilli,Enterobacteria,Ewingella,Leclercia,Paracolobactrum,Sodalis
D001407 Bacillus A genus of BACILLACEAE that are spore-forming, rod-shaped cells. Most species are saprophytic soil forms with only a few species being pathogenic. Bacillus bacterium
D001419 Bacteria One of the three domains of life (the others being Eukarya and ARCHAEA), also called Eubacteria. They are unicellular prokaryotic microorganisms which generally possess rigid cell walls, multiply by cell division, and exhibit three principal forms: round or coccal, rodlike or bacillary, and spiral or spirochetal. Bacteria can be classified by their response to OXYGEN: aerobic, anaerobic, or facultatively anaerobic; by the mode by which they obtain their energy: chemotrophy (via chemical reaction) or PHOTOTROPHY (via light reaction); for chemotrophs by their source of chemical energy: CHEMOLITHOTROPHY (from inorganic compounds) or chemoorganotrophy (from organic compounds); and by their source for CARBON; NITROGEN; etc.; HETEROTROPHY (from organic sources) or AUTOTROPHY (from CARBON DIOXIDE). They can also be classified by whether or not they stain (based on the structure of their CELL WALLS) with CRYSTAL VIOLET dye: gram-negative or gram-positive. Eubacteria
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic
D013045 Species Specificity The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species. Species Specificities,Specificities, Species,Specificity, Species

Related Publications

M Pelletier, and M Frenette, and C Vadeboncoeur
February 1998, Research in microbiology,
M Pelletier, and M Frenette, and C Vadeboncoeur
November 1970, Journal of bacteriology,
M Pelletier, and M Frenette, and C Vadeboncoeur
August 1998, FEMS microbiology letters,
M Pelletier, and M Frenette, and C Vadeboncoeur
February 1987, Canadian journal of microbiology,
M Pelletier, and M Frenette, and C Vadeboncoeur
March 2001, Microbiology (Reading, England),
Copied contents to your clipboard!