Site-directed mutagenesis of the redox-active cysteines of Trypanosoma cruzi trypanothione reductase. 1995

A Borges, and M L Cunningham, and J Tovar, and A H Fairlamb
Department of Medical Parasitology, London School of Hygiene and Tropical Medicine, England.

The gene for trypanothione reductase from the Silvio strain of Trypanosoma cruzi has been cloned, sequenced and overexpressed in Escherichia coli using the constitutive lpp promoter on the expression plasmid pBSTNAV. Up to 13% of the total soluble protein is enzymically active trypanothione reductase with kinetic properties similar to the enzyme purified from T. cruzi. In order to assess the catalytic role of the putative active-site cysteine residues (C53 and C58), three mutant proteins have been constructed by site-directed mutagenesis substituting alanine or serine residues for cysteine; [C53A]trypanothione reductase, [C53S]trypanothione reductase and [C58S]trypanothione reductase. Although the purified, recombinant mutant proteins were catalytically inactive with NADPH and trypanothione disulphide as substrates, all showed comparable levels of transhydrogenase activity between NADPH and thio-NADP+, suggesting that the mutant proteins had correctly folded in vivo. All three mutants showed substantially different catalytic parameters for thio-NADP+ than the wild-type enzyme, presumably as a consequence of modifying the environment of the enzyme-bound flavin, thereby altering its chemical reactivity. The purified [C58S]trypanothione reductase showed spectral properties similar to the oxidised wild-type enzyme but, unlike the wild-type enzyme, did not acquire the characteristic charge-transfer complex of the EH2 form on addition of NADPH. In contrast, in the absence of NADPH both [C53A]trypanothione reductase and [C53S]trypanothione reductase showed spectral properties similar to the EH2 form of the wild-type enzyme. These data indicate that both C53 and C58 are essential for overall catalysis, with the thiolate anion of C58 interacting with the enzyme-bound FAD and C53 interacting with the disulphide substrate. These mutants should be useful in crystallographic studies of reaction intermediates which cannot be obtained with the catalytically active native enzyme.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009247 NADH, NADPH Oxidoreductases A group of oxidoreductases that act on NADH or NADPH. In general, enzymes using NADH or NADPH to reduce a substrate are classified according to the reverse reaction, in which NAD+ or NADP+ is formally regarded as an acceptor. This subclass includes only those enzymes in which some other redox carrier is the acceptor. (Enzyme Nomenclature, 1992, p100) EC 1.6. Oxidoreductases, NADH, NADPH,NADPH Oxidoreductases NADH,Oxidoreductases NADH, NADPH
D009250 NADP Transhydrogenases Enzymes that catalyze the reversible reduction of NAD by NADPH to yield NADP and NADH. This reaction permits the utilization of the reducing properties of NADPH by the respiratory chain and in the reverse direction it allows the reduction of NADP for biosynthetic purposes. NADP Transhydrogenase,Pyridine Nucleotide Transhydrogenase,Energy-Linked Transhydrogenase,NAD Transhydrogenase,NADPH NAD Transhydrogenase,NADPH Transferase,Nicotinamide Nucleotide Transhydrogenase,Energy Linked Transhydrogenase,NAD Transhydrogenase, NADPH,Nucleotide Transhydrogenase, Nicotinamide,Nucleotide Transhydrogenase, Pyridine,Transferase, NADPH,Transhydrogenase, Energy-Linked,Transhydrogenase, NAD,Transhydrogenase, NADP,Transhydrogenase, NADPH NAD,Transhydrogenase, Nicotinamide Nucleotide,Transhydrogenase, Pyridine Nucleotide,Transhydrogenases, NADP
D009838 Oligodeoxyribonucleotides A group of deoxyribonucleotides (up to 12) in which the phosphate residues of each deoxyribonucleotide act as bridges in forming diester linkages between the deoxyribose moieties. Oligodeoxynucleotide,Oligodeoxyribonucleotide,Oligodeoxynucleotides
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D003545 Cysteine A thiol-containing non-essential amino acid that is oxidized to form CYSTINE. Cysteine Hydrochloride,Half-Cystine,L-Cysteine,Zinc Cysteinate,Half Cystine,L Cysteine
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli

Related Publications

A Borges, and M L Cunningham, and J Tovar, and A H Fairlamb
December 1994, Experimental parasitology,
A Borges, and M L Cunningham, and J Tovar, and A H Fairlamb
March 2006, Memorias do Instituto Oswaldo Cruz,
A Borges, and M L Cunningham, and J Tovar, and A H Fairlamb
October 1994, Molecular and biochemical parasitology,
A Borges, and M L Cunningham, and J Tovar, and A H Fairlamb
October 1996, Journal of enzyme inhibition,
A Borges, and M L Cunningham, and J Tovar, and A H Fairlamb
January 2001, Revista Argentina de microbiologia,
A Borges, and M L Cunningham, and J Tovar, and A H Fairlamb
January 1991, Molecular and biochemical parasitology,
A Borges, and M L Cunningham, and J Tovar, and A H Fairlamb
July 2013, Chembiochem : a European journal of chemical biology,
A Borges, and M L Cunningham, and J Tovar, and A H Fairlamb
January 2017, Mini reviews in medicinal chemistry,
A Borges, and M L Cunningham, and J Tovar, and A H Fairlamb
April 1987, European journal of biochemistry,
A Borges, and M L Cunningham, and J Tovar, and A H Fairlamb
November 1985, Biochemistry,
Copied contents to your clipboard!