Directed mutagenesis of the redox-active disulfide in the flavoenzyme mercuric ion reductase. 1985

P G Schultz, and K G Au, and C T Walsh

Mercuric ion reductase, a flavoenzyme with an active site redox-active cystine, Cys135-Cys140, is an unusual enzyme that reduces Hg(II) to Hg(0) with stoichiometric NADPH oxidation. To probe the catalytic mechanism, we have constructed two active site Cys to Ser mutations by oligonucleotide-directed mutagenesis. The native and the Cys135, Ser140 and Ser135, Cys140 mutant enzymes are expressed on an overproducing plasmid and purified to homogeneity by a one-step procedure in high yield. The optical spectra of the mutant proteins are distinct, with the Ser135, Cys140 mutant displaying a thiolate-flavin charge-transfer band (Cys140 pKa = 5.2), confirming that Cys140, not Cys135, is in charge-transfer distance both in this mutant and in two electron reduced native enzyme. The native and both mutant proteins are dimers and are precipitated by antibody to native enzyme. Thiol titrations with 5,5'-dithiobis(2-nitrobenzoate) (DTNB) indicate that both mutants contain three kinetically accessible thiols in both oxidized and reduced states. The native enzyme has two titratable thiols when oxidized and four in the two electron reduced state. The native and two Cys to Ser mutant enzymes show differentiable NADPH-dependent catalytic behavior with Hg(SR)2 (R = CH2CH2OH), Hg(CN)2, DTNB, thio-NADP+, and O2, the most striking of which are the activities toward the Hg(II) complexes and DTNB. Only native enzyme reduces Hg(SR)2. The Ser135, Cys140 enzyme alone shows sustained Hg(CN)2 reduction, whereas the native and Cys135, Ser140 enzymes are rapidly inactivated. DTNB reduction is catalyzed by the native and Cys135, Ser140 enzymes, but not by the Ser135, Cys140 enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007106 Immune Sera Serum that contains antibodies. It is obtained from an animal that has been immunized either by ANTIGEN injection or infection with microorganisms containing the antigen. Antisera,Immune Serums,Sera, Immune,Serums, Immune
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010088 Oxidoreductases The class of all enzymes catalyzing oxidoreduction reactions. The substrate that is oxidized is regarded as a hydrogen donor. The systematic name is based on donor:acceptor oxidoreductase. The recommended name will be dehydrogenase, wherever this is possible; as an alternative, reductase can be used. Oxidase is only used in cases where O2 is the acceptor. (Enzyme Nomenclature, 1992, p9) Dehydrogenases,Oxidases,Oxidoreductase,Reductases,Dehydrogenase,Oxidase,Reductase
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D004220 Disulfides Chemical groups containing the covalent disulfide bonds -S-S-. The sulfur atoms can be bound to inorganic or organic moieties. Disulfide
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000936 Antigen-Antibody Complex The complex formed by the binding of antigen and antibody molecules. The deposition of large antigen-antibody complexes leading to tissue damage causes IMMUNE COMPLEX DISEASES. Immune Complex,Antigen-Antibody Complexes,Immune Complexes,Antigen Antibody Complex,Antigen Antibody Complexes,Complex, Antigen-Antibody,Complex, Immune,Complexes, Antigen-Antibody,Complexes, Immune

Related Publications

P G Schultz, and K G Au, and C T Walsh
March 1995, European journal of biochemistry,
P G Schultz, and K G Au, and C T Walsh
September 1990, Proceedings. Biological sciences,
P G Schultz, and K G Au, and C T Walsh
April 1988, European journal of biochemistry,
P G Schultz, and K G Au, and C T Walsh
November 1983, Science (New York, N.Y.),
P G Schultz, and K G Au, and C T Walsh
December 1994, FEBS letters,
P G Schultz, and K G Au, and C T Walsh
August 1997, The Journal of biological chemistry,
Copied contents to your clipboard!