[Distortion-product otoacoustic emissions in kanamycin-treated guinea pig cochlea]. 1995

S Kumagai
Department of Otolaryngology, Tohoku University School of Medicine, Sendai.

Measurement of distortion-product otoacoustic emissions (DPOAE) is widely accepted as one of the most valuable tools for evaluating the frequency of specific cochlear pathology. Previous studies have revealed that distortion-product levels in the ear canal are definitely correlated with degree of damage in the cochlea. However, there seem to be no clear data of help in predicting the distribution and grade of damage in the cochlea quantitatively on the basis of the results of this non-invasive test. The present study is designed to assess correlations between degree of outer hair cell (OHC) damage by a potent ototoxic antibiotic, kanamycin, and DPOAE levels at the characteristic frequency at the site. Guinea pigs were used after daily intramuscular administration of kanamycin for 7 or 10 days. DPOAE levels were measured using a system (CUBDIS: Etymotic Research) with 78 frequency combinations of iso-intensity primaries from 0.5kHz to 16kHz of f2. The frequency ratio (f2/f1) was set at 1.2. Distortion-product level plots versus f2 (DP-grams) were constructed. The integrity of the OHC system was evaluated histologically by the succinic dehydrogenase (SDH) method under a light microscope. Cochleograms were constructed by calculating percentages of intact OHCs along the basilar membrane in 1-mm blocks. The DP-grams and the histopathological cochleograms showed essentially identical patterns in the kanamycin-damaged guinea pig cochlea. The results suggest that: 1) The generation of DPOAE requires functioning OHCs. 2) DPOAE measurement provides information allowing prediction of OHC damage distribution in the cochlea without histological investigations. 3) Careful setting of primary levels and other parameters is necessary to reliably predict the pathology. 4) Attempts to detect of minimal OHC damage could fail. 5) DPOAE seem very useful for monitoring cochlear function in clinically.

UI MeSH Term Description Entries
D007612 Kanamycin Antibiotic complex produced by Streptomyces kanamyceticus from Japanese soil. Comprises 3 components: kanamycin A, the major component, and kanamycins B and C, the minor components. Kanamycin A,Kanamycin Sulfate,Kantrex
D003051 Cochlea The part of the inner ear (LABYRINTH) that is concerned with hearing. It forms the anterior part of the labyrinth, as a snail-like structure that is situated almost horizontally anterior to the VESTIBULAR LABYRINTH. Cochleas
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D017084 Otoacoustic Emissions, Spontaneous Self-generated faint acoustic signals from the inner ear (COCHLEA) without external stimulation. These faint signals can be recorded in the EAR CANAL and are indications of active OUTER AUDITORY HAIR CELLS. Spontaneous otoacoustic emissions are found in all classes of land vertebrates. Spontaneous Otoacoustic Emissions,Otoacoustic Emission, Spontaneous,Spontaneous Otoacoustic Emission
D018072 Hair Cells, Auditory, Outer Sensory cells of organ of Corti. In mammals, they are usually arranged in three or four rows, and away from the core of spongy bone (the modiolus), lateral to the INNER AUDITORY HAIR CELLS and other supporting structures. Their cell bodies and STEREOCILIA increase in length from the cochlear base toward the apex and laterally across the rows, allowing differential responses to various frequencies of sound. Auditory Hair Cell, Outer,Auditory Hair Cells, Outer,Cochlear Outer Hair Cell,Cochlear Outer Hair Cells,Hair Cell, Auditory, Outer,Hair Cells, Auditory, Outer Inner,Outer Auditory Hair Cell,Outer Auditory Hair Cells,Outer Hair Cells,Hair Cells, Outer

Related Publications

S Kumagai
September 2001, Lin chuang er bi yan hou ke za zhi = Journal of clinical otorhinolaryngology,
S Kumagai
May 1999, The Journal of the Acoustical Society of America,
S Kumagai
September 2001, Journal of the Association for Research in Otolaryngology : JARO,
S Kumagai
April 1995, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery,
S Kumagai
January 2007, Revue de laryngologie - otologie - rhinologie,
Copied contents to your clipboard!