Acoustic modulation of electrically evoked distortion product otoacoustic emissions in gerbil cochlea. 1996

T Ren
Kresge Hearing Research Institute, University of Michigan, Ann Arbor 48109-0506, USA.

In order to study the linearity of outer hair cell fast electromotility in vivo, an acoustic tone was used to interact with the electrically evoked distortion product otoacoustic emissions. Otoacoustic emissions at the primary frequencies (f1, f2, where f1 < f2) and the distortion frequencies (2f1 - f2 and f2 - f1) were evoked by a complex current, with f1 and f2 components, delivered to the gerbil round window. An externally given acoustic tone at the frequency f1 or f2 with appropriate phase and level can completely abolish both the 2f1 - f2 and f2 - f1 distortion tones. Because the external tone causes basilar membrane vibration at its natural topographic locations, this result indicates that the observed distortion tones were generated near the locations of f1 and f2 frequencies on the basilar membrane and that no distortion occurred from the stimulated cells near the electrode. The study strongly suggests a linear electromechanical transduction of the outer hair cells in the sensitive cochlea.

UI MeSH Term Description Entries
D003051 Cochlea The part of the inner ear (LABYRINTH) that is concerned with hearing. It forms the anterior part of the labyrinth, as a snail-like structure that is situated almost horizontally anterior to the VESTIBULAR LABYRINTH. Cochleas
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D005849 Gerbillinae A subfamily of the Muridae consisting of several genera including Gerbillus, Rhombomys, Tatera, Meriones, and Psammomys. Gerbils,Jird,Meriones,Psammomys,Rats, Sand,Gerbil,Jirds,Merione,Rat, Sand,Sand Rat,Sand Rats
D006198 Hair Cells, Auditory Sensory cells in the organ of Corti, characterized by their apical stereocilia (hair-like projections). The inner and outer hair cells, as defined by their proximity to the core of spongy bone (the modiolus), change morphologically along the COCHLEA. Towards the cochlear apex, the length of hair cell bodies and their apical STEREOCILIA increase, allowing differential responses to various frequencies of sound. Auditory Hair Cells,Cochlear Hair Cells,Auditory Hair Cell,Cell, Cochlear Hair,Cells, Cochlear Hair,Cochlear Hair Cell,Hair Cell, Auditory,Hair Cell, Cochlear,Hair Cells, Cochlear
D000161 Acoustic Stimulation Use of sound to elicit a response in the nervous system. Auditory Stimulation,Stimulation, Acoustic,Stimulation, Auditory
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

T Ren
August 1994, The Journal of the Acoustical Society of America,
T Ren
February 2011, Journal of the Association for Research in Otolaryngology : JARO,
T Ren
April 1995, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery,
T Ren
March 1999, Sheng wu yi xue gong cheng xue za zhi = Journal of biomedical engineering = Shengwu yixue gongchengxue zazhi,
Copied contents to your clipboard!