Quantitative anatomical basis for a model of micromechanical frequency tuning in the Tokay gecko, Gekko gecko. 1995

C Köppl, and S Authier
Institut für Zoologie der Technischen Universität München, Garching, FRG.

The basilar papilla of the Tokay gecko was studied with standard light- and scanning electron microscopy methods. Several parameters thought to be of particular importance for the mechanical response properties of the system were quantitatively measured, separately for the three different hair-cell areas that are typical for this lizard family. In the basal third, papillar structure was very uniform. The apical two-thirds are subdivided into two hair-cell areas running parallel to each other along the papilla and covered by very different types of tectorial material. Both of those areas showed prominent gradients in hair-cell bundle morphology, i.e., in the height of the stereovillar bundles and the number of stereovilli per bundle, as well as in hair cell density and the size of their respective tectorial covering. Based on the direction of the observed anatomical gradients, a 'reverse' tonotopic organization is suggested, with the highest frequencies represented at the apical end.

UI MeSH Term Description Entries
D008116 Lizards Reptiles within the order Squamata that generally possess limbs, moveable EYELIDS, and EXTERNAL EAR openings, although there are some species which lack one or more of these structures. Chameleons,Geckos,Chameleon,Gecko,Lizard
D008855 Microscopy, Electron, Scanning Microscopy in which the object is examined directly by an electron beam scanning the specimen point-by-point. The image is constructed by detecting the products of specimen interactions that are projected above the plane of the sample, such as backscattered electrons. Although SCANNING TRANSMISSION ELECTRON MICROSCOPY also scans the specimen point by point with the electron beam, the image is constructed by detecting the electrons, or their interaction products that are transmitted through the sample plane, so that is a form of TRANSMISSION ELECTRON MICROSCOPY. Scanning Electron Microscopy,Electron Scanning Microscopy,Electron Microscopies, Scanning,Electron Microscopy, Scanning,Electron Scanning Microscopies,Microscopies, Electron Scanning,Microscopies, Scanning Electron,Microscopy, Electron Scanning,Microscopy, Scanning Electron,Scanning Electron Microscopies,Scanning Microscopies, Electron,Scanning Microscopy, Electron
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D006198 Hair Cells, Auditory Sensory cells in the organ of Corti, characterized by their apical stereocilia (hair-like projections). The inner and outer hair cells, as defined by their proximity to the core of spongy bone (the modiolus), change morphologically along the COCHLEA. Towards the cochlear apex, the length of hair cell bodies and their apical STEREOCILIA increase, allowing differential responses to various frequencies of sound. Auditory Hair Cells,Cochlear Hair Cells,Auditory Hair Cell,Cell, Cochlear Hair,Cells, Cochlear Hair,Cochlear Hair Cell,Hair Cell, Auditory,Hair Cell, Cochlear,Hair Cells, Cochlear
D000161 Acoustic Stimulation Use of sound to elicit a response in the nervous system. Auditory Stimulation,Stimulation, Acoustic,Stimulation, Auditory
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001309 Auditory Threshold The audibility limit of discriminating sound intensity and pitch. Auditory Thresholds,Threshold, Auditory,Thresholds, Auditory
D001489 Basilar Membrane A basement membrane in the cochlea that supports the hair cells of the ORGAN OF CORTI, consisting keratin-like fibrils. It stretches from the SPIRAL LAMINA to the basilar crest. The movement of fluid in the cochlea, induced by sound, causes displacement of the basilar membrane and subsequent stimulation of the attached hair cells which transform the mechanical signal into neural activity. Basilar Membranes,Membrane, Basilar,Membranes, Basilar
D013680 Tectorial Membrane A membrane, attached to the bony SPIRAL LAMINA, overlying and coupling with the hair cells of the ORGAN OF CORTI in the inner ear. It is a glycoprotein-rich keratin-like layer containing fibrils embedded in a dense amorphous substance. Membrane, Tectorial,Membranes, Tectorial,Tectorial Membranes

Related Publications

C Köppl, and S Authier
September 2020, Veterinary ophthalmology,
C Köppl, and S Authier
March 1968, Acta oto-laryngologica,
C Köppl, and S Authier
March 2016, Doklady biological sciences : proceedings of the Academy of Sciences of the USSR, Biological sciences sections,
C Köppl, and S Authier
February 2020, Journal of morphology,
C Köppl, and S Authier
January 1974, Brain, behavior and evolution,
C Köppl, and S Authier
January 2022, Frontiers in microbiology,
Copied contents to your clipboard!