Biosynthesis of heparin/heparan sulfate. The D-glucosaminyl 3-O-sulfotransferase reaction: target and inhibitor saccharides. 1995

N Razi, and U Lindahl
Department of Medical and Physiological Chemistry, University of Uppsala, Sweden.

O-Sulfation at C-3 of N-sulfated GlcN units concludes polymer modification and the formation of antithrombin binding regions in the biosynthesis of heparin/heparan sulfate. The resulting GlcNSO3(3-OSO3) units are largely restricted to heparin chains with high affinity for antithrombin (HA heparin). Low affinity (LA) heparin fails to serve as a substrate in the 3-O-sulfotransferase reaction yet contains potential 3-O-sulfate acceptor sites (Kusche, M., Torri, G., Casu, B., and Lindahl, U. (1990) J. Biol. Chem. 265, 7292-7300), as verified in the present study using a novel sequencing procedure. O-Desulfated, re-N-sulfated LA heparin, as well as an octasaccharide fraction isolated after heparinase I digestion of LA heparin, both yielded labeled HA components following incubation with solubilized mouse mastocytoma microsomal enzymes and [35S]adenosine 3'-phosphate 5'phosphosulfate (PAPS), suggesting that the 3-O-sulfo-transferase may be inhibited by sulfated saccharide sequences outside the 3-O-sulfate acceptor region. Indeed, the addition of LA heparin precluded enzymatic 3-O-sulfation of a synthetic pentasaccharide substrate. The Km for the pentasaccharide was determined to approximately be 6 microM. Incubations of mixed pentasaccharide substrate and saccharide inhibitors revealed Ki values for intact LA heparin and for a heparin octasaccharide fraction of approximately 1.3 and approximately 0.7 microM, respectively. Inhibition experiments with selectively desulfated heparin indicated that both IdoA 2-O-sulfate and GlcN 6-O-sulfate groups contributed to the inhibition of the 3-O-sulfotransferase. By contrast, chondroitin sulfate or dermatan sulfate showed no significant inhibitory activity. It is proposed that the regulation of GlcN 3-O-sulfation during biosynthesis of heparin/heparan sulfate depends on the topological organization of the membrane-bound enzyme machinery in the intact cell.

UI MeSH Term Description Entries
D007413 Intestinal Mucosa Lining of the INTESTINES, consisting of an inner EPITHELIUM, a middle LAMINA PROPRIA, and an outer MUSCULARIS MUCOSAE. In the SMALL INTESTINE, the mucosa is characterized by a series of folds and abundance of absorptive cells (ENTEROCYTES) with MICROVILLI. Intestinal Epithelium,Intestinal Glands,Epithelium, Intestinal,Gland, Intestinal,Glands, Intestinal,Intestinal Gland,Mucosa, Intestinal
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008861 Microsomes Artifactual vesicles formed from the endoplasmic reticulum when cells are disrupted. They are isolated by differential centrifugation and are composed of three structural features: rough vesicles, smooth vesicles, and ribosomes. Numerous enzyme activities are associated with the microsomal fraction. (Glick, Glossary of Biochemistry and Molecular Biology, 1990; from Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) Microsome
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009844 Oligosaccharides Carbohydrates consisting of between two (DISACCHARIDES) and ten MONOSACCHARIDES connected by either an alpha- or beta-glycosidic link. They are found throughout nature in both the free and bound form. Oligosaccharide
D011134 Polysaccharides Long chain polymeric CARBOHYDRATES composed of MONOSACCHARIDES linked by glycosidic bonds. Glycan,Glycans,Polysaccharide
D002236 Carbohydrate Conformation The characteristic 3-dimensional shape of a carbohydrate. Carbohydrate Linkage,Carbohydrate Conformations,Carbohydrate Linkages,Conformation, Carbohydrate,Conformations, Carbohydrate,Linkage, Carbohydrate,Linkages, Carbohydrate
D002240 Carbohydrate Sequence The sequence of carbohydrates within POLYSACCHARIDES; GLYCOPROTEINS; and GLYCOLIPIDS. Carbohydrate Sequences,Sequence, Carbohydrate,Sequences, Carbohydrate
D002846 Chromatography, Affinity A chromatographic technique that utilizes the ability of biological molecules, often ANTIBODIES, to bind to certain ligands specifically and reversibly. It is used in protein biochemistry. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Chromatography, Bioaffinity,Immunochromatography,Affinity Chromatography,Bioaffinity Chromatography
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance

Related Publications

N Razi, and U Lindahl
October 1996, The Journal of biological chemistry,
N Razi, and U Lindahl
December 1999, The Journal of biological chemistry,
N Razi, and U Lindahl
June 2011, Zhonghua gan zang bing za zhi = Zhonghua ganzangbing zazhi = Chinese journal of hepatology,
Copied contents to your clipboard!