cDNA cloning and eukaryotic expression of feline CD9. 1995

B J Willett, and J C Neil
Department of Veterinary Pathology, University of Glasgow Veterinary School, U.K.

A monoclonal antibody (vpg15) has been described which can block infection with feline immunodeficiency virus (FIV) and which recognizes the feline homologue of CD9. In order to study the role of feline CD9 in infection with FIV we have molecularly cloned a cDNA encoding feline CD9 by R.A.C.E (rapid amplification of cDNA ends). The amino acid sequence of feline CD9 displays 95.1, 93.8 and 90.7% homology to human, murine and bovine CD9, respectively. Although feline CD9 appears most homologous to human CD9, it has two important features in common with bovine and murine CD9: the presence of a histidine residue at position 192 which is absent from the corresponding position (194) in human CD9; and the absence of two asparagine residues which are found at positions 51 and 52 of human CD9. Feline CD9 is unique in that it lacks a potential N-linked glycosylation site in the first extracellular loop, a feature common to CD9 of other species. Despite the high degree of sequence homology, significant cross-species variation occurred in the two predicted extracellular loops, notably between amino acids 169 to 180 of the second loop. When feline CD9 was expressed on human and murine cells, it was recognized by both the conformation-dependent feline CD9-specific antibody, vpg15, and the cross-species reactive anti-human CD9 antibody, FMC56, confirming that the feline CD9 clone encoded a protein which was synthesized, transported to the cell surface and expressed in a similar conformation to native feline CD9. However, although the vpg15 antibody did not recognize human CD9 when expressed on human epithelial cells, it reacted with human CD9 when expressed on murine fibroblast cells. It is possible therefore, that the conformational epitope recognized by the vpg15 epitope is sensitive to either species- or tissue-specific post-translational modification.

UI MeSH Term Description Entries
D008562 Membrane Glycoproteins Glycoproteins found on the membrane or surface of cells. Cell Surface Glycoproteins,Surface Glycoproteins,Cell Surface Glycoprotein,Membrane Glycoprotein,Surface Glycoprotein,Glycoprotein, Cell Surface,Glycoprotein, Membrane,Glycoprotein, Surface,Glycoproteins, Cell Surface,Glycoproteins, Membrane,Glycoproteins, Surface,Surface Glycoprotein, Cell,Surface Glycoproteins, Cell
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D005434 Flow Cytometry Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake. Cytofluorometry, Flow,Cytometry, Flow,Flow Microfluorimetry,Fluorescence-Activated Cell Sorting,Microfluorometry, Flow,Cell Sorting, Fluorescence-Activated,Cell Sortings, Fluorescence-Activated,Cytofluorometries, Flow,Cytometries, Flow,Flow Cytofluorometries,Flow Cytofluorometry,Flow Cytometries,Flow Microfluorometries,Flow Microfluorometry,Fluorescence Activated Cell Sorting,Fluorescence-Activated Cell Sortings,Microfluorimetry, Flow,Microfluorometries, Flow,Sorting, Fluorescence-Activated Cell,Sortings, Fluorescence-Activated Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D015703 Antigens, CD Differentiation antigens residing on mammalian leukocytes. CD stands for cluster of differentiation, which refers to groups of monoclonal antibodies that show similar reactivity with certain subpopulations of antigens of a particular lineage or differentiation stage. The subpopulations of antigens are also known by the same CD designation. CD Antigen,Cluster of Differentiation Antigen,Cluster of Differentiation Marker,Differentiation Antigens, Leukocyte, Human,Leukocyte Differentiation Antigens, Human,Cluster of Differentiation Antigens,Cluster of Differentiation Markers,Antigen Cluster, Differentiation,Antigen, CD,CD Antigens,Differentiation Antigen Cluster,Differentiation Marker Cluster,Marker Cluster, Differentiation

Related Publications

B J Willett, and J C Neil
February 1992, Bioscience, biotechnology, and biochemistry,
B J Willett, and J C Neil
October 1990, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
B J Willett, and J C Neil
August 2000, Veterinary immunology and immunopathology,
B J Willett, and J C Neil
June 1985, Nucleic acids research,
B J Willett, and J C Neil
October 2001, The Journal of veterinary medical science,
B J Willett, and J C Neil
December 1993, The Journal of veterinary medical science,
B J Willett, and J C Neil
June 2010, Reproduction in domestic animals = Zuchthygiene,
B J Willett, and J C Neil
April 1982, Nucleic acids research,
B J Willett, and J C Neil
November 2006, Life sciences,
Copied contents to your clipboard!